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System identification is an inverse problem of determination of the mathematical strubture
of the physical system from measurements of the forcing functions induced upon it and the
resultant response. Inverse problems in nonlinear analysis require techniques with rigourous
theoretical base, which can provide valid routes to parameter estimation. The structure of the
Volterra series (Volterra 1930, 1959), which models the relationship between system
response and input in terms of a series of first and higher order convolution integrals,

provides an analytical platform which can be utilized for parameter estimation.

In the present study, the structured Volterra response representation under harmonic
excitation is employed to develop identification and parameter estimation procedures for
nonlinear systems. Single and multi-degree of freedom systems have been considered.
Single and multi-tone harmonic forcing functions have been employed for system excitation.
Frequency domain transformation of Volterra kernels is carried out to obtain higher order
Frequency Response Functions, which are interpreted and processed for system
identification and estimation. Practical application of Volterra series, however poses two
basic difficulties - convergence of the series and measurement of individual kernel functions
(Christensen, 1968; Czarniak and Kudrewicz, 1984; Tomlinson et al., 1996). A major
emphasis has been put in this work on issues related to convergence of the series, implicit

errors and measurability of higher order response components.

Volterra series is a non-parametric form of response representation. Non-parametric
identification concerns modeling in a function space by input-output mapping, for systems
where sufficient information on the mathematical structure or class is not available.

Parametric identification, on the other hand, refers to systems where sufficient a-priori



information about the mathematical structure of the class to which the system belongs, i
available. Identification procedure, in such cases reduces to estimation of system parameter:
through a search in parameter space. A review of identification procedures in applications
involving networks and devices, has been done by Haber and Unbehauen (1990) for various
classes of nonlinearity, such as Wiener model, Hammerstein model, Wiener-Hammerstein
model etc. Research in system structure identification, for mechanical engineering
applications is relatively scant. Most of the works available in literature (Rice and
Fitzpatrick, 1988, 1991; Mottershed and Stanway, 1986; Bendat and Peirsol, 1986; Khan
and Vyas, 1999) pertain to parameter estimation based on an assumption of polynomial
nonlinearity or specific non-polynomial nonlinearity forms. Nayfeh (1985) has suggested a
combination of perturbation and free vibration tests for identification of certain nonlinear
characteristics such as hysteresis, presence of self-oscillatory terms etc. Bendat et al (1992)
developed a general identification technique for measured input-output stochastic data for a
wide range of nonlinearities such as Duffing oscillator, Van-der Pol oscillator, dead band

and clearance nonlinaerity.

Discussions on Volterra kernel identification can be found in review papers by Hung and
Stark (1977), Billings (1980), Haber and Unbehauen (1990). Volterra series involves
convolution between the applied excitation and the kernels of the system. The first order
kernel is same as impulse response function of a linear system. Higher order kernel
functions are understood as multi-dimensional impulse response functions. A nonlinear
system can be either characterised, in time domain, through kernel functions (Schetzen,
1965a, 1965b, 1974; Marmarelis and Naka, 1974; Korenberg, 1973) or through kernel
transforms in frequency .domain (Bedrosian and Rice, 1971; Baumgarter and Rugh, 1975;
Boyd, Tang and Chua, 1983; Chua and Liao, 1989, 1991; Gifford and Tomlinson, 1989).
The Wiener series (Wiener, 1958) attempts to circumvent the two basic difficulties, of
convergence and measurement of Volterra kernels. Wiener functionals are orthogonal for
white Gaussian excitation function and can be separated through cross-correlation
techniques. However Wiener theory can only be applied for Gaussian inputs and the analysis
requires to be done for a large number of input-output records for obtaining statistical

averages of the estimates (Khan and Vyas, 1999).
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The present study attempts to develop an identification and parameter estimation approacl
for nonlinear systems using Volterra series response representation under harmonis
excitations. Response is measured in time domain and filtered to obtain various responst
harmonic amplitudes. Most nonlinear analysis problems consider only the Duffing oscillator
as a representative case. In engineering analysis, it is however, also important to recognize
the type of nonlinearity influencing the system. In the present work, an identificatior
procedure based on response component separation of the Volterra series is suggested for
classification between polynomial and non-polynomial form of nonlinearities. Distinction is
further made between a symmetric and asymmetric form of nonlinearity. Higher order
kerel transforms are investigated for general polynomial forms and a peak ratio algorithm
is developed to identify the polynomial structure up to the cubic term. The procedures are

illustrated with simulated numerical results.

Limited convergence is an inherent difficulty associated with the series and needs to be
addressed rigorously, prior to its application to a physical system. The problem of
convergence is addressed, in this study, in terms of convergence of individual frequency
harmonics of the nonlinear response. Though the procedure is applicable to general
polynomial form nonlinearity, it is illustrated for a Duffing oscillator subjected to harmonic
excitation. A general and structured series expression is obtained for amplitudes of all
response harmonics and convergence is investigated in terms of a non-dimensional nonlinear
parameter. Critical values of this parameter, representing the upper limit of excitation level
for the convergence, are defined for a wide range of excitation frequencies. Zones of
convergence and divergence of the response series are presented graphically, for a range of
the non-dimensional nonlinear parameter and the number of terms included in the
approximation of a response harmonic. An algorithm based on ratio test is presented to
compute the critical value of the non-dimensional nonlinear parameter. Results obtained
from the suggested algorithm are found to be in close agreement with the exact values. The
method gives better results compared to previous methods and has wider application in
terms of excitation frequency. The procedure is also investigated for a two-degree-of-

freedom system.



Tl
procedures are based on a recursive iteration technique and employ the fact that for suc

systems higher order Volterra kernels can be sysnthesised from first order kernel
Measurements are made for the first and higher order kernels. The higher order kernels are als
synthesised mathematically in terms of the measured first order kernels and the unknow
nonlinear parameters. Estimation of these nonlinear parameters is carried out throug
comparison between synthesised and measured higher order kernels. The estimation procedur
considers the response series representation up to a finite number of terms, which is decided b
convergence requirements of Volterra series. The problem of low signal strength of highe
harmonics is investigated and a measurability criterion is proposed for selection of excitatio
level and range of excitation frequency. The procedure is illustrated through numerica

simulations on a Duffing oscillator typically representing a rotor-bearing system.

Estimation procedures for single-degree-ofJfreedom systems with single-point excitation ar
extended to multi-degree-of-freedom systems. These systems involve cross-kemel functions it
addition to direct kernel functions (Worden et al., 1997). Kernel synthesis formulations fo:
higher order direct and cross-kernels are developed in matrix forms. Multi-point harmoni¢
excitation is designed for measurement and estimation of kernel transforms. Using kerne
transform synthesis formulations, the vector of nonlinear parameters and linear paramete:
matrices are estimated through recursive iteration procedure. The algorithm is structured anc
can be readily employed for design of experiments. Numerical studies have been carried out for
a typical two-degree-of-freedom nonlinear model representing a rotor-bearing system with

cross-coupled stiffness coefficients.

Experimental investigations and validation of the developed estimation algorithms have been
carried out on a laboratory rotor-bearing test rig. Harmonic excitation is applied to the system
through the bearing housing caps using an electro-dynamic shaker. Excitation and response
signals are simultaneously measured and processed. Linear and nonlinear stiffness parameters
are estimated and compared with approximate theoretical formulations and some previous

experimental results.
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parameters are estimated and compared with approximate theoretical formulations and some

previous experimental results.

To summerise, a structured form of nonlinear identification and estimation procedure has
been developed. System identification is carried out to distinguish polynomial form of
nonlinearity from other forms. The form of the polynomial is also identified. Estimation of
the parameters of polynomial form nonlinear system is carried out through a recursive
iteration procedure. The procedures, though illustrated for a cubic nonlinearity, are general
in application and can be extended to any form of polynomial nonlinearity. The procedures
are extended for multi-degree-of-freedom systems. Practical problems such as convergence,
presence of background noise and low signal strength of higher harmonics have been
discussed and excitation levels and frequencies have been designed to address and overcome

these problems.
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CHAPTER 1

INTRODUCTION

Inverse problems of system identification and parameter estimation are crucial in
nonlinear analysis. Response behaviour of nonlinear systems under specific excitation
conditions can be predicted accurately only when the system structure and the parameters
are completely known. While extensive research has been carried out in identification
and parameter estimation of linear systems, research on nonlinear system identification

has been relatively less.

Identification in linear mechanical and structural engineering applications is equivalent to
finding the coefficients of the mass-spring-damper mathematical models. Identification
problem is more involved for a nonlinear system, due to existence of various forms of
restoring and dissipative force nonlinearities in physical systems. Nonlinearity structure
of these forces can be of a polynomial or non-polynomial form. The Duffing oscillator is
a typical example of polynomial form of restoring force nonlinearity, whereas quadratic
damping, hysteretic damping and fractional power stiffness in rolling element bearings
are some of the examples of non-polynomial form of nonlinearity. A nonlinearity
structure can be a symmetric function of displacement, as in Duffing oscillator or
asymmetric as in the case of a bilinear oscillator. System definition problem of a
nonlinear system, therefore, consists of (i) identification of the nonlinearity structure
through the most appropriate mathematical model and (ii) subsequent estimation of the
various parameters in the mathematical model. However, few reports are available in
literature on the nonlinearity structure identification and most of the reported works

suggest parameter estimation procedures based on some assumed nonlinearity model.

The objective of the present study is to employ the Volterra series to address problems of
both -identification and estimation in nonlinear systems. Procedures based on analysis of
higher order frequency response functions defined through Volterra series, are developed

for classification of restoring force nonlinearity. The dissipative force is assumed to be



linear. Systems are classified as having either polynomial type nonlinearity, where the
restoring or spring force can be represented by a polynomial with constant coefficients, or
non-polynomial type, where the spring force does not fall into this category. For
polynomial class of spring forces, the structure of the polynomial is further identified.
Non-polynomial class of nonlinearities is not sub-classified further. Parameter estimation
methods have been developed for systems with polynomial nonlinearity. The approach is
based on estimation of first and higher order Volterra kernels in the frequency domain,
and then employing their mutual relationships to extract values of nonlinear parameters.
The estimates are refined through recursive iteration. The series was developed by Vito
Volterra in the early part of twentieth century and later used by Wiener for nonlinear
system analysis. Wiener also extended the Volterra series for stochastic input-output
relationship mapping, through a set of orthogonal functionals known as Wiener G-

functionals and the new series came to be known as Wiener series.

The structures of Volterra and Wiener series provide rigorous theoretical platforms for
response analysis of a nonlinear system. Volterra series represents the response of a
systein by a series of first and higher order convolution integrals. Convolution is carried
out between the applied excitation and the kernels of the system. The first order kernel is
the same as impulse response function of a linear system. Higher order kernel functions
are understood as multi-dimensional impulse response functions. Multi-dimensional
Fourier transforms of these kernel functions are called kernel transforms. A nonlinear
system can be characterised either in time domain through kernel functions or through
kernel transforms in the frequency domain. Two basic difficulties associated with
practical application of Volterra series are convergence of the series and measurement of
individual kernel functions. These difficulties are circumvented in the Wiener series.
Wiener functional are orthogonal for white Gaussian excitation function and can be
separated through cross-correlation techniques. However Wiener theory can only be
applied for Gaussian inputs and the analysis requires to be done for a large number of

input-output records for obtaining statistical averages of the estimates.



The procedures in the present thesis employ harmonic excitation functions and involve
analysis of response harmonic characteristics. Harmonic excitations are most common
type of excitation and can easily be generated in laboratory or field. Response under
applied harmonic excitations is measured and harmonic contents are filtered for further
analysis. A detailed review of available literature on identification and estimation of
nonlinear system with particular emphasis on Volterra and Wiener series is given in
Chapter 2. Various methods suggested by researchers are discussed with their

applicability and limitations.

An introduction to Volterra series response representation and method of harmonic
probing is given in Chapter 3. Response structures under single-tone and multi-tone
harmonic excitations are formulated in terms of first and higher order kernel transforms.
Series form expressions for response harmonic amplitudes are extracted from the overall

response representation.

Procedures developed for identification of the form of nonlinearity are presented in
Chapter 4. Characteristics of the various component orders in the Volterra series and their
frequency transforms are discussed and employed to distinguish between polynomial
form and non-polynomial form of nonlinearities. The form of Volterra series components
also provides information on whether the nonlinearity is symmetric with respect to
deformation or not. Damping is assumed to be linear in the analysis. Higher order kernel
transforms are investigated for general polynomial forms and a peak ratio algorithm is

developed to identify the polynomial structure up to the cubic term.

The parameter estimation procedure for single-degree-of-freedom systems is presented in
Chapter 5. First and higher order kernel transforms are estimated from the measured
response harmonic amplitudes. Kernel synthesis formulations are employed to estimate
nonlinear parameters. Estimated nonlinear parameters are then employed to refine the
kernels and the recursive iteration process is continued till desired convergence is
achieved. The kernels are approximated from the measured response by considering a

finite number of terms of the infinite number of power terms of the Volterra series.



Convergence of the truncated series is a function of the response harmonic under
consideration, amplitude and frequency of excitation force and the yet to be determined
linear and nonlinear parameters of the system. Major emphasis has been laid, in the
present study, on carrying out a detailed convergence study and appropriate design of
experiments for parameter estimation. Additionally, a simple procedure based on a ratio
test is also suggested to determine the optimum number of terms for series convergence.
Measurability of higher harmonics is an associated problem, which is highlighted in the
present study. The problem of low signal strength of higher harmonics is investigated and
a measurability criterion is developed for selection of excitation level and range of
excitation frequency. The procedure is illustrated with numerical simulations for a
Duffing oscillator, with data typically representing a rotor-bearing system. The results
highlight the accuracy of estimation, particularly of the nonlinear parameter and

damping.

The concept of single-point excitation based Volterra series has been extended to multi-
degree-of-freedom systems by Tomlinson et al., using direct and cross-kernel functions.
This extended structure is employed in Chapter 6, for developing parameter estimation
procedure for a multi-degree-of-freedom system. Kernel synthesis formulations for
higher order direct and cross-kernel transforms are developed in matrix forms. Multi-
point harmonic excitations are designed for measurement and estimation of the kernel
transforms. Formulations for synthesis of higher order transforms from lower orders are
developed and the nonlinear parameter vector and linear parameter matrices are estimated
using recursive iteration technique. The algorithm is structured and presented in a generic
form so that it can be employed for general multi-degree-of-freedom systems. Numerical
studies have been carried out for a typical two-degree-of-freedom nonlinear model
representing a rotor-bearing system with cross-coupled bearing stiffness coefficients.
Experimental investigations are described in Chapter 7. The laboratory test rig, excitation
procedure and instrumentation have been discussed. Estimated linear and nonlinear
bearing stiffness parameters are validated through comparisons with available theoretical

approximations and previous experimental investigations.



CHAPTER 2

LITERATURE REVIEW

Identification of dynamic systems from input-output data is of considerable importance in
areas of applied mechanics, control engineering, chemical and biological processes.
System response under dynamic conditions can be predicted reliably and accurately only
if the system model is known in terms of its mathematical structure and physical
parameters. The need and objective of system identification can be manifold. In control
problems, the objective is often to design control strategies for a particular performance.
In structural engineering, the purpose of identification is to analyze and predict the
structural response under a wide variety of excitations. Identification can be at times,
usefully employed to diagnose malfunctioning or to detect damages through changes in

the system parameters.

Procedures for input-output analysis and identification of a linear dynamic system are by
now well established. A large number of identification techniques have been developed
such as Frequency Response Function and curve fitting method, Ewins (1984); time
domain identification technique, Ibrahim (1973); method of spectral density functions,
Bendat and Peirsol (1986); Instrumental variable method, Fritzen (1986). System
modeling in linear form is widely used as in most practical situations, system response
can be reasonably analysed and predicted by a linear model. However, many physical
phenomena like multiple steady states, jump, limit cycles, sub-harmonic and super-
harmonic resonances, self-excited oscillations etc. cannot be predicted or explained by

linear analysis.

Characterisation of nonlinear dynamic systems, from input-output data, is broadly
categorised into parametric and non-parametric identification (Astrom and Eykhoff,
1971; Hung and Stark, 1977, Billings, 1980). Parametric identification refers to systems

where sufficient a-priori information about the mathematical structure of the class to



which the system belongs, is available. The identification procedure, in such cases
reduces to estimation of system parameters through a search in parameter space. Non-
parametric identification concerns modeling in a function space by input-output mapping,
for systems where sufficient information on the mathematical structure or class is not

available.

2.1 Non-Parametric Identification Procedures

The input-output mapping, under non-parametric methods, is done through a series of
functionals or a series of orthogonal functions. In functional series representation, such as
in Volterra series or Wiener series, identification consists of determining the kernels of
the functionals either in time-domain or in the frequency-domain. In orthogonal series
representation, such as in Restoring Force Mapping techniques, response variables are
represented in terms of some orthogonal series and identification consists of
determination of the coefficients of the terms in the series. These series are generally
infinite in nature and are to be truncated to finite number of terms for the purpose of
identification. Identification results improve in accuracy with increasing number of terms
in the truncated series. However, computational effort makes it prohibitive to consider

large number of terms and in most cases, identification is limited to first few series terms.

2.1.1 Restoring force Mapping Techniques

Masri and Caughy (1979) expanded the nonlinear restoring force in a series of
Chebyshev polynomials in terms of the response variables, displacement and velocity.
Assuming the mass of the system as known, inertia force was calculated from the
measured acceleration. Restoring force was then obtained from the measured applied
force and the computed inertia force. Nonlinear relationship between the restoring force
and the response variables was obtained by fitting a surface using regression over the
displacement-velocity plane. The procedure can be applied to a wide class of nonlinear
systems and there is no restriction on the type of input excitation. The method was later
extended, by Masri et al (1982), for multi-degree-of-freedom systems. Modal matrix was

assumed to be known and was used to transform the restoring force functions into



generalised forces. Udwadia and Kuo (1981) used arbitrary orthogonal sets of functions
for restoring force mapping on close coupled multi-degree-of-freedom systems such as
multi-story buildings. The method, was further extended to cases of support excitation by
Masri et al (1987), in which the restoring force was separated into linear and nonlineér
part and only the nonlinear part was approximated by Chebyshev polynomial. Ibrahim
and Yang (1988) used power series to represent the restoring force for branched multi-
degree-of-freedom systems. The advantage of using power series mapping is that when
the nonlinearity is indeed in polynomial form, the coefficients exactly match with the
nonlinear parameters. Further work in this direction has been reported by Worden and
Tomlinson (1989) and Al-Hadid (1989). Restoring force mapping technique provides
identification methods for a wide class of nonlinear systems, but it suffers from the mean
bias and drift error which are introduced during integration of acceleration data to obtain
velocity and displacement records. The method is not suitable for simple polynomial
nonlinearity, like Duffing oscillator, because non-parametric mapping involves relatively
large set of coefficients to be determined for sufficiently accurate representation of such

nonlinearities.

2.1.2 Volterra and Wiener Series

Volterra series (1930, 1959) represents the response of a system in a functional series
form. The first term in the series is the well-known convolution integral used for input-
output mapping of linear systems. Subsequent series terms consist of higher order
convolution integrals operating on the input functions through higher order impulse
response functions known as Volterra kernels. Frechet (1910) was first to explore the
possibility of a continuous functional on a set of functions to be represented in a power
series form. Vitto Volterra studied these functionals as early as 1913 and represented the
input-output relationship of a general system in a functional series form, which later came
to be known as Volterra series. The series was first applied for nonlinear system analysis
by Norbert Wiener (1958). Two basic difficulties associated with practical application of
Volterra series are convergence of the series and measurement of individual Volterra
kernels of the given system. Measurement of individual kernels is possible only if the

contribution of each of the Volterra operators can be separated from the total response.



Wiener circumvented these difficulties by constructing a new functional series with a set
of orthogonal functionals known as Wiener G-functionals. These functionals are
orthogonal with respect to Gaussian white noise excitation. Due to orthogonal property of
the functional, Wiener kernels can be conveniently separated through cross-correlation
techniques. Wiener kernels are related to Volterra kernels and once Wiener kernels are
separated, Volterra kernels can be subsequently determined. Wiener series has improved
convergence characteristics because the convergence of an orthogonal series is a
convergence in mean and thus Wiener series describes a larger class of nonlinear systems
(Schetzen, 1980).

Barret (1963) and Flake (1963) have presented various details on use of Volterra series in
nonlinear system analysis. Brillinger (1970) defined higher order transfer functions for
polynomial systems and outlined the method of estimating these transfer functions by
multi-tone harmonic excitation and by Gaussian excitation using higher order cumulant
spectra. Bedrosian and Rice (1971) illustrated frequency domain methods for response
characterisation of nonlinear systems under harmonic excitation as well as random
excitation along with the effect of noise on the measured response. Concepts of inverse
functional and inverse operator were also introduced. Palm and Poggio (1977) derived
rigorous results concerning conditions under which a nonlinear functional admits
Volterra and Wiener representations. They also provided sufficient conditions for
connection between Volterra and Wiener representation. Lesiak and Krener (1978)
studied existence and uniqueness criteria of Volterra series. Yasui (1979) discussed a
stochastic functional Fourier series for nonlinear system analysis. In analogy to Fourier
coefficients, Fourier kernels are introduced and are determined through cross-correlation
between the output and the orthogonal basis functions of the stochastic input. Possible
links between the Fourier and Volterra series are investigated and relationship between
Volterra and Wiener series is discussed for a subclass of nonlinear systems. Palm and
Popel (1985) have elaborated on the scope and limitation of Volterra representation and
Weiner-like identification of nonlinear systems with reference to polynomial systems and
discontinuity in system characteristic functions. Bussang et al. (1974) have determined

interaction of multiple input signals within a nonlinear system. They introduced the



concept of nonlinear transfer function and discussed determination of these nonlinear
transfer functions by the method of harmonic probing. Various response characteristics
observed in electrical and communication networks such as de-sensitisation, inter-
modulation, compression etc were explained. Further work based on single-tone and
multi-tone harmonic excitation was carried out by Weiner and Spina (1980), Victor and
Shapley (1980) and Chua and Ushida (1981).

2.1.3 Convergence of Volterra Series

Although Volterra series provides a structured approach for nonlinear system analysis, its
convergence problem puts severe limitations to its use. Volterra series is a power series in
functionals and similar to a Taylor series, it suffers from the problem of limited
convergence. Chrinstensen (1968) and Czarniak and Kudrewicz (1984) have studied the
convergence characteristics of Volterra series. Sandberg (1992) has shown that a
truncated Volterra series provides a uniform approximation to the infinite Volterra series
on a ball of bounded input for a large class of systems. Tomlinson and Manson (1996)
studied the convergence of first order FRF of a Duffing oscillator under harmonic
excitation and presented a simple formula for determining the upper limit of excitation
level. However the formula is valid only. for excitation frequencies close to the system

natural frequency.

2.1.4 Time-domain Identification of Volterra and Winer kernels

Katzenelson and Gould (1962) developed an iterative time-domain method for obtaining
the kernels. The method seeks to identify the system equivalently in terms of the solution
needed for an optimum filter. Schetzen (1965) presented a method for measuring the
Volterra kernels as multi-dimensional impulse responses of a finite order nonlinear
system. A method for synthesis of higher order Volterra kernels was presented in a
subsequent paper by the same author (1965a). Harris and Lipidus (1967) used Wiener
theory for identification and synthesis of nonlinear chemical reactor system with two
level inputs. Gardiner (1966,1968) developed a method for separation of the response
into first order and higher order response components. The method is based on measuring

responses at different excitation levels and solving a system of algebraic equations, in



which response components are related to the measured response values at every time
instant by a Vander-Monde matrix. Sandberg and Stark (1968) measured the kernels of
pupillary system up to second order using Lee-Schetzen’s cross-correlation technique as
well as bi-pulse method. Simpson and Powers (1972) discussed a correlation technique
with periodic input function, in which the response components and Volterra kernels are
directly separated by taking multi-dimensional cross-correlation between the output and
input over the periodic duration of the input function. A method of directly identifying
the Volterra kernels using an exponentially decaying function multiplied by a bounded
zero mean independent process, was developed by Korenberg (1973). Marmarelis and
Naka (1973) presented two-input approach for kernel identification in the response of
catfish retina. Hung and Stark (1977) gave a comprehensive review of various kernel

identification methods.

Fakhouri (1980) and Billings and Fakhouri (1980) analysed a nonlinear feedback system
and developed an identification algorithm for open and close loop nonlinear systems
based on pseudo-random excitation. Ewen and Weiner (1980) identified second order
kernels for a nonlinear system with finite number of power law devices. The system is
excited by a sum of exponentially decaying signals and the measured input-output data
are processed using pencil-of-functions approach of system identification. This results in
a complete set of linear equations involving all the parameters, which then can be solved

to obtain the second order kernel.

Fakhouri, Billings and Wormald (1981) discussed estimation errors in Volterra kernel
identification procedures through correlation techniques. They derived expressions for
variance of the first and second order correlation function estimates and found that the
variance is dependent on the record length, mean level and power of the input and the
structure of the system under investigation. Haber (1989) has discussed kernel estimation
of the discrete Volterra series for quadratic block oriented models. Koukoulas and
Kalouptsidis (1995) proposed an approach for identification of Volterra kernels based on
cross-cumulants and their spectra, rather than cross-correlation. The input to the system is

a stationary zero mean Gaussian random process that is not necessarily white. Using the
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cross-cumulant of the output sequence with m copies of the input, it is shown that the
cumulant operator of the m copies of the input with any Volterra operator of order less
than m is equal to zero. Using properties of cumulants, formulae are derived for

computation of the Volterra kernels in the time and frequency domains.

2.1.5 Frequency-Domain Identification of Volterra and Wiener Kernels

Frequency domain methods determine kernel transforms over the frequency space. Two
types of excitation are used for kernel transform estimation - harmonic excitation and
random excitation. Wiener kernel transforms can be identified only through random
excitation whereas Volterra kernel transforms, can be estimated through use of both

random and harmonic excitations.

Method of Stochastic Excitation: French and Butz (1973) developed a general frequency

domain method for calculation of higher order Wiener kernels using exponential
functions as a set of orthogonal functions for expanding the kernels. In another work,
French and Butz (1974) developed an algorithm based on expansion of Wiener kernel in
terms of Walsh functions. Orabi and Ahmadi (1987), Gifford and Tomlinson (1988)
illustrated the technique of calculating higher order FRF’s for nonlinear structural
systems. They curve-fitted a nonlinear multi-degree-of-freedom parametric model to FRF
data considering the measured FRFs as Volterra kernel transforms. Nam, Kim and
Powers (1990) presented a frequency domain approach for identification of a discrete
third order Volterra system with random input. A digital poly-spectral analysis algorithm
is developed and used for identification and parameter estimation of a Duffing oscillator.
Odiari and Ahmadi (1987) presented a Wiener-Harmite functional series expansion
method for response analysis of nonlinear systems under random excitations. Odiari and
Ewins (1992) have presented a frequency domain procedure for identifying the vibration
parameters of nonlinear vibratory systems with particular emphasis on rotor-bearing
systems. Khan and Vyas (1999, 2000a, 2000b) developed a general procedure for
parameter estimation in a rotor-bearing system through Wiener kernel estimation using

broad-band random excitation.
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Method of Harmonic Probing: Bedrosian and Rice (1971) presented a detailed study on
determination of higher order Volterra kernel transforms from the response under
sinusoidal excitations. It was shown that for complete determination of nth order kernel
transform, the excitation has to consist of » different frequencies. Subsequently a large
number of works (Bussang et al., 1974; Chua and Ng., 1979, 1979a; Weiner and Spina,
1980; Rugh, 1980) were reported on nonlinear system analysis and response
characterisation using sinusoidal excitations. Baumgarter and Rugh (1975) presented an
identification method using steady-state frequency response data and nonlinear transfer
functions, for a class of nonlinear systems composed of cascaded linear systems
interconnected with integer power nonlinearirties. The method works on interpolation by
polynomials with rational coefficients. An improvement on this work was suggested by
Wysocki and Rugh (1976), where higher harmonics were also measured. Chua and Tang
(1982) reported a procedure to determine the amplitude and frequency of sinusoidal
nonlinear oscillator by solving a pair of algebraic nonlinear equations which were
generated by a recursive algorithm. Boyd, Tang and Chua (1983) discussed a technique
for extracting the second order kernel transform using multi-tone harmonic probing.
Response components were separated using Gardiner’s method and frequency domain
analysis was carried out to obtain the second order Volterra kernel transforms. Although
two-tone excitation can determine completely the entire set of second order kernel
transforms, the authors used three-tone excitation and demonstrated how it can
significantly reduce the number of experiments. The focus of the work was proper
selection of tone frequencies, such that the combination frequencies do not overlap.
Another approach for establishing a rationale for selecting the in-commensurate tone
frequencies has been presented by Victor and Shapley (1980). Chua and Liao (1989)
extended the kernel measurement procedure to third and higher order transforms. The
authors also presented a procedure for estimating the highest significant order in a
polynomial system (1991). Xiaojiang et al. (1990) developed a nonlinear modal
parameter surface fitting method and used it to determine second order kernel transform
of a square law nonlinear system. Storer and Tomlinson (1993) and Gifford (1993)
discussed procedures for estimation and experimental measurement of higher order

transfer functions with truncated response series. The procedures involved sinusoidal
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excitation and nth order transfer function was obtained from mth harmonic response
component neglecting the contributions from higher order terms. Lee (1997) extended the
higher order transfer function identification to parameter estimation where first harmonic
response components are extracted by order separation method and the second and third
order transfer functions so obtained, are related to the first order transfer functions
through the nonlinear parameters. Worden, Manson and Tomlinson (1997) extended the
harmonic probing algorithm to multi-input Volterra series. Response structure was

developed in terms of direct and cross-kernel transforms.

2.2 Parametric Identification Procedures

Parametric methods require a-priori knowledge of the mathematical structure and order
of the system. In control systems, electrical and electronic networks can often be
represented by block oriented models such as Hammersein model, Wiener model etc
(Haber, 1989, 1990). In these models linear parts are separately connected to nonlinear
elements by a multiplier. Methods for structure identification for these block orieneted
models are generally based on characteristics of measured Volterra kernels. Marmarelis
and Naka (1974) pointed out that if the two-dimensional kernel exists only at a main
diagonal then the model is of Hammerstein type. Haber (1989) presented structure
identification of various models such as Hammerstein, Wiener, Wiener-Hammerstein
models through characteristics of measured Volterra kernels. An overview of various
structure identification methods for block-oriented models can be found in the survey

paper of Haber and Unbehauen (1990).

In mechanical and structural systems, nonlinearity can occur in stiffness forces or in
damping forces. These nonlinearities are modeled generally through polynomial form,
though non-polynomial forms such as drag force type quadratic damping, hysteretic
damping, Coulomb damping, bilinear stiffness etc (Nayfeh, 1979; Choi, Miksad and
Powers, 1985; Bendat and Piersol, 1986) are also observed in the physical systems.
Neyfeh (1985) proposed a method to identify the nonlinear character of a system by
perturbation and free vibration test. The method investigates the presence of self

oscillatory terms or hysteresis by perturbing the system about its equilibrium positions.
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For systems not showing these nonlinearities, form of damping is determined by free
vibration test based on rate of amplitude decay. Bendat, Palo and Coppolino (1992)
developed a general identification technique from measured input-output stochastic data
for a wide range of nonlinearities including Duffing oscillator, Van-der Pol oscillator,
dead band and clearance nonlinearity. The method is based on multiple input/single
output linear analysis of reverse dynamic systems. Dimentberg and Sokolov (1991)
presented methods for identification of restoring force nonlinearity from system response
to a white noise excitation. The method is based on estimating probability density
functions and spectral analysis of the response. Parameter estimation methods include
direct approaches, linearisation techniques, filtering and state estimation methods,
methods using higher order spectral density functions and Markov process approach.
White noise excitation is used as input forcing function for statistical linearisation

techniques, methods using spectral density functions and Markov process approach.

2.2.1 Filtering and State Estimation techniques

Many filtering and estimation techniques have been developed for obtaining the best
estimate of the parameters defining state trajectories from noisy data. These techniques
estimate the augmented state vector including the unknown parameters appearing in the
governing equations. Various methods commonly used for estimation are least squares,
maximum likelyhood and Kalman filter. Distefano and Rath (1975) applied this
procedure to the identification of nonlinear structural seismic systems using least square
method, whereas Yun and Shinozuka (1980) applied it to identification of multi-degree-
of-freedom nonlinear systems using Kalman filter. These methods assume nominal
values for the elements of the augmented state vector and a nominal trajectory. The
augmented state vector is then perturbed and the trajectory is expanded in a Taylor series
about the nominal trajectory. Deviations in the trajectory as a function of time are related
to the perturbations in the augmented state through a transition matrix. In the works of
Distefano and Rath, Yun and Shonozuka the nominal responses and transition matrices
were determined by numerically integrating the governing nonlinear equations. As an
alternative, Hanagud, Meyappa and Craig (1985) analytically determined the nominal

response using the method of multiple scales. Mook (1989) presented a technique for
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optimal estimation of state vector trajectory from noisy time-domain state vector
measurements of a nonlinear dynamic system. McNiven and Matzen (1978) have
employed the Gauss-Newton method to minimise an integral of the weighted squared

output error function to determine the unknown parameters.

2.2.2 Linearisation Techniques

Linearisation techniques are based on the concept that a nonlinear system with small
nonlinearity can be replaced by an equivalent linear model. For sinusoidal excitation
linearisation methods generally leave the fundamental frequency component undisturbed
in an equivalent linear system, but neglect higher harmonics. Ibanez (1988) used a
describing function approach to obtain an approximate transfer function for the
fundamental response harmonic component. Mottershed and Stanway (1986) presented
an identification procedure for pth-power damping where governing equations were
framed in state-space form and the state vector was linearised with respect to the
unknown parameters by taking a first order Taylor series expansion of the state vector.
Time series record of state vector consisting of displacement and velocity were measured
at a number of time steps and least square error criterion was applied to estimate the

parameters.

In case of random vibration, interpretation in terms of fundamental frequency and
harmonics is not possible. Systems, under such condition, are linearised by replacing a
nonlinear relation by an equivalent linear gain, while conserving in specific properties of
the true nonlinear output. Broerson (1974) modeled the nonlinear terms in the governing
equation with a series expansion of functions and determined the coefficients of the
expansion by using correlation techniques. This approach is an extension of the method

of statistical linearisation and uses random excitation as the input.

2.2.3 Markov Process Approach
A process, whose present probabilty distribution depends on only one previous time
instant, is called a Markov process. The structure of a Markov process is completely

determined, for all future times, by the distribution at some initial time and a transition
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probabilty density function, which satisfies a linear partial differential equation known as
the Fokker-Planck-Kolmogorov (Fokker, 1914; Planck, 1917, Kolmogorov, 1931)
equation. Statistical response characteristics have been extensively studied, using F-P-K
equation for nonlinear restoring forces and special forms of nonlinear damping, by
Ariaratnam (1960), Caughy (1963) and Caughy and Ma (1983). F-P-K equations for
nonlinear parameter estimation was employed by Tiwari and Vyas (1995, 1997, 1997a,
1998). They described procedures for estimation of nonlinear elastic parameters of
bearings based on the analysis of random response signals measured from the bearing
housing vibration. The procedure did not require a-priori knowledge of the random
excitation force induced by bearing defects. The dynamics of rotor-bearing system was
modeled as a Markov process and F-P-K equations were formulated and solved for the
inverse problem of parameter estimation. The procedure was developed for cases of rigid
rotors; single disc flexible rotors and multi-disc flexible rotors. The study was extended
further to include harmonic excitation due to rotor unbalance. The algorithms were also

verified experimentally, for a laboratory rotor-bearing test rig.

2.2.4 Spectral Density Function Approach

Linear system identification procedure, using spectral density functions, was extended by
Bendat and Peirsol (1982) for a nonlinear system with square law nonlinearity. In this
method the nonlinear model was first reconfigured into multi-input single output model
in which additional input paths correspond to various nonlinearities. Higher order spectral
density fuhctions such as bi-spectral and tri-spectral density functions were defined for
random input-output data and linear and nonlinear path transfer functions were obtained
in terms of these spectral density functions. Bi-spectral density function represents
frequency domain transformation of a square law nonlinear path. Similarly the tri-spectral
density function represents the transformation of a cubic nonlinear path. Thus use of
these higher order spectral density functions is limited to polynomial form of nonlinearity
only. A case of drag force type nonlinearity in wave force experienced by offshore
structures and moored vessels was studied by Bendat and Piersol (1986a) where the non-
polynomial quadratic nonlinearity was replaced by statistically equivalent combination of

linear and cubic nonlinear paths and then higher order spectral density functions were
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used for equivalent parameter estimation. Identification procedures for a wide range of
nonlinear elements using higher order spectral density functions can be found in the
subsequent work of Bendat (1990). Rice and Fritzpatrick (1988, 1991) presented a
spectral density approach based on 'reverse path analysis'. Transformation, along
nonlinear paths was carried out in time domain followed by first order spectral density
computation. The identification approach was further extended to two-degree-of-freedom
systems with cubic nonlinearity (Rice and Fritzpatrick, 1991b). Richard and Singh (1998,
1999) also utilized the 'reverse path analysis' to formulate another procedure for
identifying multi-degree-of-freedom systems and illustrated the method for three and
five-degree-of-freedom systems with asymmetric and distributed nonlinearities. A critical
study comparing the methods of Rice and Fritzpatrick with that of Richard and Singh has
been recently reported by the latter authors (Richards and Singh, 2000).

2.2.5 Direct Approaches

Mohammad, Worden and Tomlinson (1992) presented a parametric method, which works
directly with the differential equation. The forcing function and response (acceleration)
are measured at each time step and velocity-and displacement values are obtained through
integration of acceleration data. These time series data, when put into the governing
equation of motion, gi ve an over-determined system of equations in terms of unknown
parameters, which are estimated through minimising the norm of residual error vector.
However the method suffers from the practical limitation that all the response variables
are to be measured simultaneously which is particularly difficult for multiple-degree-of—
freedom systems. Also the displacement and velocity data, obtained through integration

of acceleration records, are susceptible to drift and dc bias.
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CHAPTER 3

VOLTERRA SERIES RESPONSE REPRESENTATION

Volterra series provides a platform for non-parametric input-output mapping of a
physical system. It is a power series and a generalisation of the well-known convolution
integral for linear systems. Volterra series components are evaluated through convolution
of various orders of impulse response functions with corresponding orders of the forcing
function. Volterra series is described in this chapter and the response representation
characteristics for harmonic force functions are discussed. Both single-tone and multi-
tone excitafions are considered and higher order kernel synthesis formulations are
developed for a single-degree-of-freedom system. It is shown that the harmonic response
of a nonlinear system can be obtained in a structured form using the Volterra series. The
structured form is to be utilsed further for nonlinearity identification and parameter

estimation of a nonlinear system.

3.1 Volterra Series Response Representation

The functional series representation of the input-output relationship for a general physical

system with f(¢) as input excitation and x(f) as output response can be expressed as

x(O)= [m(m)f-r)de+ [ [mE,0)f(-n)f(-7)dndr,

o (3.1)
+ [ [ [rs(rm0.3) £ -1 f =) F(t = T3)dTidrydes + ..

=x1(O)+x () + .4+ x, () +...

with nth order response component, x, (f) , given as

%, ()= [oee [By(F1oes 0) [t = 71)e f (= 7,)dTy . T, (3.2)

-0 -0
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h,(zy,...,7,) are the Volterra kernels and for a physically realizable system

h,(715..57,) =0 for 7;<0, j=12,..n.

First order Volterra kernel, %;(z;), is the familiar impulse response function of a linear

system. Higher order kernels can be viewed as higher order impulse response functions,

which serve to characterise the various orders of nonlinearity.

The response series (3.1) can be, alternately, expressed in operator form as

x(t) =Y H,[f ] (3.3)

n=1

with mth order Volterra operator given as

H[fOl= [ .. [Brpntn) fE=170) (= 7,)d7y. T,

-0 =0

Volterra series is a power series with memory, which expresses the output x(z)of a
nonlinear system in powers of the input f(#). This can be seen, by changing the input by

a factor x, which gives the output as

x() =Y H,[xf )]
7=l (3.4)

=S ", [10)]

n=1

The above is a power series in the amplitude factor x .

Higher order Frequency Response Functions (FRFs) or Volterra kernel transforms can be

defined as the multi-dimensional Fourier transforms of the higher order Volterra kernels

as
© © © n )

H,(®,05,...0,)= _f f jhn(r,,fz,...,rn)ne'J“"T“drldrz...d'rn (3.5)
—00 =00 =00 i=1

such that
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o« o0 e}

1 e
=(2-ﬂ)n [ [ ] Holor,00,.0,)] [/ doda,..dw, (3.6)
—0—0 —0 i=1

Ry (Tq5eer Ty)

First order kernel transform H,(@,) is the familiar linear transfer function. Similarly,
H,(@,0;,...,0,) , is the transform of the nth order Volterra kernel A, (z;,75,...,7,) and

can be seen to be analogous to an nth order transfer function.

The kernels can be taken to be symmetric without loss of generality, i.e.,
hy(71,75) = hy (19, 77) etc (Schetzen, 1980). Consequently, the kernel transforms are also
symmetric, 1.e., H,(@y,w,)=H,(w,,w). In general, an nth order kernel transform
H,(wy,...,»,) is independent of the arrangement order of its arguments aj,...,®,,.

Volterra kernels characterise a nonlinear system in time domain, whereas Volterra kernel

transforms represent a system in the frequency domain.

3.2 Response under Single-Tone Harmonic Excitation

A single-degree-of-freedom system, with general polynomial form of stiffness

nonlinearity is considered.

mi(t) +cx(t) + glx(1)] = f (). 3.7

For single-tone harmonic excitation

f(#)= Acoswt= _‘g.eﬂ“_‘__‘zie—ja)t .

and nonlinear term g[x(¢)] expressed in general polynomial form as

glx(O]= kyx(f) + kox? (£) + kx> (£) +... (3.9)

using Volterra series representation (3.2), the response components are obtained as

x(t) = g Hi(w)e!™ + -’21 H,(-w)e ™™ (3.10a)
2 2 . 2 _

X, (1) = %_ H,(0,~o)+ i%- H, (w,0)e’* + %- Hy(~w,~w)e /2 (3.10b)
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43 e 34° - 3 :
x3(t) = ?H3 (w,0,0)e’>* +-—8—H3 (0,0,-0)e!™ +-3i§—H3 (@,~0,~w)e ™™

3 (3.10c)

e H;y(~0,~0,-w)e /3

The expression for the #th order response component can be developed as

A4\ -
xn(f)=(——j > ", H (@t @~ Oreeei~0)e? PP 0< p<p; 0<g<n

ptq=n p times g times

— é ! Z”C HP4 Jopgt

=5 g Hy Y (@)e (3.11)
p+q=n

where the following brief notations have been used

HPY(w)=H, (@,..,0,— ®,...,~@) ®,,={-q

p times g times

The total response of the system, can be then expressed as

x(t) = i(-’g) > ", HP (@) o/ Prdt (3.12)
n=1

p+q=n

3.2.1 Response Harmonic Amplitudes
Combinations of different p and ¢ result in various response harmonics at frequencies

@pq =®,20,3w etc. and the response series given in (3.12) can be written in terms of

its harmonics as

x(1) = Xg +|X (@) cos(@ t + ¢)) + | X (2m)| cosQr t + ) + | X (Bw)| cos(Bar £ +3) +.
(3.13)

where the response harmonic amplitudes, X (n@), are obtained by collecting all the

terms associated with the exponential /%P in equation (3.12) for @, , =(p—-q)o =naw

and are given by

0 A 2n
X0=Z(5) 2nC H3 ()

n=l
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X(nw) = ioi (nw) and ¢, = LX(nw) (3.14)

i=1

with

A n+2i-2 ] L
o;(hw)= 2(5) w2, HMEN () (3.15)

Equations (3.14, 3.15) show that odd harmonics are associated with odd order kernel
transforms and even harmonics are associated with even order kernel transforms. A
response harmonic series, X (n®), always begins with nth order kernel transform in its

first series term.

3.2.2 Synthesis of Higher Order Kernel Transforms

Limiting the polynomial nonlinearity in equation (3.9) up to the cubic term, i.e.,
glx(O]1= kyx(t) + kpx? (1) + k3% () (3.16)

and substituting equation (3.12) in the equation of motion (3.7), one obtains

0 n :
Z(gj >, "Cq HY (@) [_ mwg, +h+ jca’p,q]

n=1 p+qg=n
[ — A ; j@ tq2

+k, Z(-z—) >."C, HP (@) e’“P1 (3.17)
| n=1 p+q=n

2(4Y n Y jopgt | _ A jor | A —jar
+ ks Z — Z Cq Hp ¥ (w)e =—e +—2—e

| h=1 p+q=n 2

Applying the method of harmonic probing (Bedrosian and Rice, 1971) and equating the
n .
coefficients of (—g) e Ord ,n=1,2,3....., one obtains

Hy(®) =1/(-mw? + k| + jew) forn=1 (3.18a)
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and

b Y e Er @ e, HE R @)
pitqi=n;
1P @) = T1@p0)| e

Pitqi=n;
ny+hy+ny3=n

forn>1 (3.18b)

Thus, a higher order kernel transform H 7 (w), can be synthesised from the lower order

kernel transforms and the nonlinear parameters &, and ;.

Equation (3.18b) is based on partitioning of the integer # into (i) two integers »; and ny
satisfying the condition 7 +n, =n and then into (ii) three integers n;,n, and n;
satisfying the condition n; +#n, +#n3 =n. The number of permutations of partitioning

increases exponentially with increasing #, thus making the symbolic expression too long.

In practice, it is more convenient to compute the higher order kernel transforms
numerically through step by step reduction with an algorithm for integer partitioning. For
a typical Duffing oscillator with only the cubic nonlinearity term in the equation (3.16),

i.e. when k, =0, equation (3.18b) becomes

n Cy |k Z {m qu HZMII (w)}* {nz qu H}Zz#]z ((0)}* {n3 Cq3 H’:3,q3 (a))}

]

Hi(w,,) \
an,q (Cl)) - . Cp,q k3 Z {nl qu H;Zl d1 (0))}* {f’lz qu Hrliz,_sqz (Cl))}* {n3 Cq3 H’{;}a‘h (0))}
i +qi=h,
7 r’;l+32+713=n

(3.19)
It is obvious, that for n = 2, there does not exist any set of three nonzero positive integers
n,n,,n; which can meet the required condition nj +n, +n; =n=2. Therefore, the
second order kernel transform H3*¥(w) reduces to zero for a Duffing oscillator.

Similarly, other even order kernel transforms, H? (@), H}*? () etc. also become zero

for a Duffing oscillator.
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3.3 Response under Multi-Tone Harmonic Excitation

For the nonlinear system described earlier in equation (3.7) and a typical three-tone

excitation given by

f(t) = Acosaqt + Beosw,t + C coswst (3.20)

the Volterra Series response components, following equation (3.2), are obtained as

x1 (1) ‘-'-i;-Hl (@1)e™ +§H1 (@,)e’ +%H1 (w3)e’ ™

+ complex conjugate terms 3.21)

42 B? G
x2(t)=—2’“H2(a)la"a)l>+_2'"H2((02="602)+‘2_H2(w3='_w3)

A? YA TN\’ 204t
+—4—H2(0)1,w1)ej “ +—4‘H2(ﬁ)2,0)2)61 . +TH2(0)3,493)6J -

+%§H2(wl’a)2)ej(wl+wz)[ +B—2(:'—H2(a)2,a)3 )ej(a)2+a)3)t + iZC_Hz(a)l,a)3)ej(&)]+0)3)t

+ A;;i Hy(@y,-07)e? @7 + _l?2£ Hy (07 ,-@3)e” @272 + 14‘29 Hy(@1,~w3)e @)
+ complex conjugate terms (3.22)
343 34B? 34C? -
x3(t) = — Ienop-on+ Hy (@, 0, ,~07) + H3(a>1,a>3,—w3):'ef“’1’
3B 342B 3BC2

j ot
+ ——8——H3(a)2,a)2,—a)2)+ H; (0 ,~w,0,) + H3(a)2,w3,—a)3)}e1“’2

[3¢3 3B2C 342C

e Hj(w3,03,~03) + Hiy(w,,~@,,03) +
3 3wt B3 J3mst C3

+——§—H3(a)1,a)1,a)l)ej ! +?H3(0)2,(02,a)2)e 2 +-8—H3(a)3,a)3,co3)e

H3 (0)1 s~ W, Q3 )jle Jost

j30)3t

34BC
+

H3 (501 0y =3 )ej(a)1+w2—co3)t

Hy (01, 05,03 Yo (@rt@rtas)t | 3A43C'

o — 34BC (00— —
34BC H3(a)1,—a)2,503)ej(wl wytas)t \ 2 H3(C!)1,—'602,"503)ej(w] W) ~3)t
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2
+ 475 H3(w),0p,0,)e/ Gt

342
3 5 —— H3(0,0,,~0, Yo/ 2an=an)t

34°C
+

Hy (@),0,03)e/ P20 4 3A8C Hj(@),0,,~05)e’21~3)

2
3B°C 3B%C 2y

(209 +@7 )¢t
Hiy(@y,w,,m5)e! Po2+@s) - =2 Hy(wy,09,~03)e’

34B2 :
+ H;(wp,0,,0, )eJ(2w2+(01)t 3ASB Hy(~wy, 0,0, )ej(za)z—a)l)t
BC? .
+ 3BC H, (0)2,0)3,&)3)3J(2w3+w2)t 3BC? 2 - w2,603,(03)ej(2w3 —w,)t
34C2 .
+ Hy(w,,05,0; )ej(2w3+£01)t 34C? 4 o050 JQws~oy)t
+ complex conjugate terms (3.23)

In general, the »th order response component can be expressed as

¢

Xp(t)=— D APYIBTCTNC, oy W HE Y () @7 P (3.24)
p+q+s+u
+Vv+w=n

where

n _ n! )

P = i D p g suww =P = Qo) +(s—u)wy + (v - w)as
and
HPﬂsqu(Cl)) H (601, 601, 5D D9 50y D9 y = W1 ... a)z,a):,” ,a)3, @35y a)3)
. L i AN

p times q txmes s times u umes v tlmes w tlmes

The expression for the total response can be then written as

e o]
1 -
x(t) = Z_; Z APFa pstuvw ncp,q,s,u,v,wHl‘f’q’s’u,v’w (@) ejwp,q,,r,u,v,wt (3.25)
n=l p+g+s+u

+v+w=n
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Substituting response series of equation (3.25), in the equation of motion (3.7), with

3

polynomial nonlinearity given by (3.16), and equating the coefficients of %B—’ej (@)t

one obtains
Hy(o,02) = —ky Hy(@) Hi(@02)H (@ + @) | (3.26a)

which gives the general synthesis formulation of a second order kernel transform.

;’__f_lﬁ_c_ P J(oy+oy+as)t

Similarly, equating the coefficients of , the third order kernel

transform can be synthesized from the first order kernel as

Hj (o, 0,,03) = Hj(0))H|(0,)H(@3)H (@) + 0y +@3) *

P 3.26b
I:%kf{Hl(wl'*'wz)"'Hl(wz +a)3)+H1(a)1+a)3)}—k3} ( )

3.3.1 Response Harmonic Content

It can be seen from equation (3.25) that the response x(f), under multi-tone excitation in
addition to the harmonics at the probing frequencies w;,®,,®; etc., contains harmonics
at higher order combination frequencies given by mw; + myw, +m3@; +..., where

my, m,, ms ,... are integers and can be either positive or negative.

It is also to be noted that, the first order response component, x;(¢), contains only the
fundamental harmonics (equation 3.21), while higher order response components contain
multiple harmonics and combinati‘on' tones (equations 3.22, 3.23). The number of
combination tones or harmonics increases in a response component with its order. For a
general multi-tone excitation having » number of probing frequencies, the number of

harmonics contained in various response components (up to third order) are tabled below.
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Table: 3.1  Harmonics in various response components

Response Combination tone types Number in  Total Number
Component each type of harmonics
xl (t) CDZ' n n
29 (1) 20; n
a),- + CUJ n(n- 1) n 2
x3() w; n
360,- n
20, +; 2n(n-1) 2n?, forn=2
3
w; tw; twy(for n>2 only) 4"Cy —%—n-:;in—, forn>2

Harmonic contents in higher order response components can be similarly worked out.

3.3.2 First Appearance of a Harmonic

The expression (3.24), for the nth order response component x,(f), reveals that a
particular combination tone of frequenc: equal to m @, + my@, + myw; +..., appears
for the first time in the mnth order response component x,(f) where
n=|m|+|m,|+|my|+.. and then it appears in every alternate successive response

component x

n+2i

(). Also, a harmonic of the form m @, + myw, + myw; +...is associated

with the kernel transforms of order n, n+2, n+4 etc.

3.3.3 Response Amplitude of a Harmonic '
Response harmonic amplitude representation for a multi-tone excitation involves large
number of tones. For a typical three-tone excitation, using equation (3.25), the response

amplitude X (m @, + myw, + myw3) can be written in a series form as
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o0
X(moy + myw, +myw3) = ZO',- (my@y + myw, +mya5) 3.27)
i=l

with
1 a2 . .
i - |+211 my +212 M3+213 * n
O-l (mla)l + m2a)2 + m3a)3) 2n+2i-—3 Z A B C le +i1 ,iI,M2+i2 ,iz,m3+l'3 ,i3
i1+i2
+f3=i—1

m +i1 ,l",mZ +i2 ,i2 ,M3+i3,i3
Hy2i (@)

(3.28)

where 7 =|m,|+|m,|+|m;|

Application of equation (3.27) requires, for uniqueness, that among the set of
combination tones under consideration, two combination tones should not be equal to

each other or to any of the fundamental probing frequencies (Boyd et al 1983).

3.4 Remarks

The Volterra series provides a structured form response representation for a nonlinear
system. The series is constituted of the first and higher order components. The first order
component is associafed to the linear part of the system. The higher order components are
contributed by the nonlinear parameters of the system. The first order component
involves the impulse response function, while higher order kernels can be viewed as
multi-dimensional impulse response functions. Odd order response components display
only odd harmonics in the frequency domain, while even order components of the
response display only even harmonics. These characteristics of the Volterra series are

employed further for nonlinearity characterization and estimation.
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CHAPTER 4

NONLINEARITY STRUCTURE CLASSIFICATION

The Volterra series structure discussed in the previous chapter is utilized to develop a
nonlinearity classification scheme. System nonlinearity is distinguished between
polynomial and non-polynomial forms. A procedure for classification of nonlinearity
structure into symmetric and asymmetric forms, is also presented. Further, for polynomial
form nonlinearities, the polynomial structure is also identified using properties of higher
order kernel transforms. The procedures have been illustrated through numerical

simulation.

4.1 Ordered Component Separation Technique

For a single degree of freedom system,
mi(t) + ci(r) + g[x(0)] = F (O @.1)
with harmonic excitation f(¢)= Acoswt, the first three response components given in

equation (3.10) are rewritten below.

51(0)=2 Hy (@)™ + 21, (-0)e™ (4.22)
42 42 . 42 _
X, (t) = 5 H,(0,~0)+ e H,(w,0)e’*™ + v Hy (-0,~w)e /> (4.2b)

3 3 3

x3()= %— Hy(0,0,0)e” + 3—184——- Hy(0,0,~0)e’™ + 513—116 (0,~0,~w)e I

5 (4.2¢)

g Hy (—0,~0,~0)e "

A characteristic feature of the response components above is that odd harmonics appear
only in odd order response components and even harmonics appear only in even order

response components.
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An odd order response component Xyme1(8)comprises of odd harmonics
®,3w,...,(2m+ 1)@, while an even order response component x,,, (f) contains a constant

d.c. term and even harmonics 2w, 4®,....2mw .

These structural characteristics of Volterra series response components are employed
here for nonlinearity identification. The procedure is based on separating the first few
response components by a method originally suggested by Gardiner (1968) and then used

in a matrix form by Simpson and Powers (1972).

If x4 (), x5 () and x(,)(f) are the measured responses for three different cases of

system excitation f(¢t)=cacoswt, f(t)=pfcoswt and f(t)=ycoswt ,respectively,

then

X@® | |a a® & [x)] [e
Xp =18 B B | x0)|+|e 4.3)
X ) Y 72 73 X (f) €3

Response components x; (¢), x, (f), x3(f) can be estimated from the above relationship. e;

are the truncation errors which are generally neglected while solving equation (4.3).

4.2 Identification of Polynomial Nonlinearity Form

Frequency domain analysis of the response components is carried out to distinguish a
polynomial form of the nonlinear restoring force g[x(t)] , in the governing equation (4.1),

from non-polynomial forms (e.g. bilinear, coulomb, p-th power type etc.).

For a system with a general polynomial form of nonlinearity
glx(®] = kyx(0) + kpx® (1) + ks (1) (4.4)
the response spectrum is typically shown in Figure 4.1(a). The non-dimensional response

n(z) = x(t)/(A4/k;) has been numerically simulated, through a fourth order Runge-Kutta
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algorithm, for a set of non-dimensional parameters: 7=/ /k;/m=0.4;
¢=c/2\lym=0.01; A, =kyA/k}=0.01; A3 =k3A4%/k=0.015, where the non-

dimensional time 7 =./k;/m¢. The response components, 7,(7), n,(7),n3(r) are
separated using the order component separation technique of equation (4.3). Figures

4.1(b),(c),(d), respectively show the Fourier transforms Z;(r), Z,(r)and Z;(r) of the

response components 7, (7), 7, (z), 73 (7).

It can be seen that the first response component spectrum, Z,(r), contains only the first
harmonic at » = 0.4, second response component spectrum, Z, (), contains the second
harmonic at 2xr =0.8 alone, while the third response component spectrum, Z3(r),
contains the first and third harmonics. This observation is in confirmation with the
structure of order components as given in equations (4.2). However a non-polynomial
form of nonlinearity, gives results, which are in violation of equations (4.2). Figure 4.2(a)
gives the Fourier transform of the simulated response for a system with nonlinearity
given by

glx)] = ke(@)x(0) (4.5)

It is to be noted that a nonlinearity of above type can be expressed as a polynomial, with
constant coefficients only for a constant range of response amplitude. The coefficients of
the polynomial approximations, in general are functions of response amplitudes. The
Fourier transforms (Figures 4.2.a-d) of the response components, in this case do not show
the kind of structured behaviour, as seen in the case of polynomial nonlinearity (Figures
4.1.b-d. Similar disorder is observed in the case of a bilinear form of nonlinear function,
given by

g[x®] = ke(®) (4.6)
with the dual stiffness values k=¢; for x(¥)>0 and k£ =c, for x(t) <0. The Fourier

transforms of the overall non-dimensional response 7(r) and the first response

components 7;(r)are shown in Figures 4.3(a),(b), for ¢; =0.9,c, =1.0 and non-
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dimensional frequency equal to 0.4. However the second and third order components,

1, (z) and 775 (7) are found to be zero. Other commonly occurring non-polynomial forms

of nonlinearity, where the damping and stiffness forces take the form a[xz(t)—-lli(t)
(Van-der Pol Oscillator); cx(f)+kx(f)£ F; (Coulomb Damper); ,Ba'c(t)!fc(t)[+k1x(t)

(Quadratic Damping); ci(t) + kxP (t)sgn(x) (for a fractional power p, as in rolling
element bearings) also do not exhibit an ordered form, as discussed earlier, when their

response is treated as a Volterra series comprising of various ordered components.

These observations can be explained by the fact that, the procedure for ordered
component separation remains valid only if the system kernels are amplitude
independent. For a polynomial form of nonlinearity, the system kernels are independent
of response amplitude and function of system parameters only. This is seen from the first
order kernel transform expressiops given in equation (3.18a) and the synthesis
formulation for higher order kernel transforms given in equation (3.18b). While, the first

order kernel transform is a function of the system’s linear parameters alone (in addition to
the excitation frequency), the higher order kernel transforms H /9 (w) are functions of

lower order kernel transforms and nonlinear parameters. For non-polynomial
nonlinearity, such expression of kernels in amplitude independent form is not possible.
An equivalent polynomial form, in such cases, givés rise to amplitude dependent system
parameters through its coefficients. This results in amplitude dependent kernel
transforms. Subsequently, application of the method of ordered component separation,

which involves variation of the excitation amplitude, gives inconsistent results.

These observations constitute the identification procedure for polynomial form of
nonlinearity, whereby a given system can be subjected to a sinusoidal excitation and the

response x(¢) is assumed to be a result of the convolution of apﬁlied force with the first
and higher order Volterra kernels. Volterra series response components x; (), x5 (£), x5 (f)

can be extracted through equation (4.3). Compliance of the Fourier transforms of these

response components with the harmonic component structure of equation (4.2) can be
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checked. The system can be classified as having a polynomial form of nonlinearity in its

restoring force if an odd order response component, x,,.;(f), contains only odd
harmonics @, 3®,...,(2m+1)w, while an even order response component Xy, (), if

present, comprises of even harmonics 2w,4®,...,.2me alone. If the spectra of the

response components do not exhibit above ordered characteristics, the system

nonlinearity can not be classified as polynomial form.

4.3 Distinction between Symmetric and Asymmetric Polynomial Forms

A polynomial form of nonlinearity, can be further identified as symmetric or asymmetric,
through analysis of the even and odd harmonic of the response components. For a

symmetric nonlinearity (e.g. as in Duffing oscillator), where
glx)]=-g[-x®)], (4.7)
only odd orders x,,.(#)of the response x(f)exist. The even ordersx,,, (f) are zero.

Expressing a symmetric form polynomial nonlinearity of the restoring force in a system
through

mi(t) + ex(t) + kyx () + k3 x> (€) + ksx” (6) + ... = £(), (4.8)
and multiplying the above equation (4.8) by —1, one gets

— mi(f) — cx(t) — kyx(t) = ky x> (6) —ksx> () —... = = £ (£) (4.9)
‘Noting that , — x 2™+ "= [— x(t)]z”‘+1 , above equation (4.9) can be rewritten as

m[- %)+ c[- %))+ Iy [- ()] + k5 [(—x(t))3 ]+ ks [(—x(t))s ]+ ==f(t) (4.10)
If X(¢) be the response for a negative excitation, — f(¢), so that the governing equation is,
mi (£) + cx(£) + kg Z() + ky X (£) + ksZ> (1) +...=—£(t) (4.11)
comparison of (4.8) and (4.11) gives

x()+x()=0 (4.12)
i.e. for a symmetric nonlinear system, the sum of response under excitations f(f)and

— f(t) become zero. However, a system with asymmetric nonlinearity with atleast an

even power term ko, x>™(f) in its governing equation, provides [~ (O™ =[x ",
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leading to x(#)+ X(r) # 0. Substituting x =1in equation (3.4), for excitation f(#)one
obtains

x(1) =x1(O) +x,(F) +x3(8) + ... 4.13)
Similarly, substitution of x = —1in equation (3.4) for excitation — f(¢) gives

() =—x; (&) + x5 (£) = x3() +... 4.14)
Application of condition in equation (4.12) for a symmetric polynomial nonlinearity
gives

Xo(t)+x4()+...=0 (4.15)
As the above equation is to be satisfied for all excitation levels, it implies that

X, (£) =0, x4(t)=0,... |

Now, since even order harmonic of the excitation frequency @ appear only in even order
response components X, (¢), x4 (f),...(equation (4.2)), the above leads to the conclusion
that the response x(f), of a system with symmetric polynomial nonlinearity will be
devoid of any even order harmonics of the excitation frequency. The Fourier spectrum
Z(r)of the non-dimensional response 7(7)for a Duffing oscillator (symmetric
polynomial nonlinearity) has been shown in Figure 4.4 . The spectrum is characterised by
the presence of odd harmonics only. Even harmonic will, however, appear in response of

asymmetric nonlinear systems (Figure 4.5).

4.4  Identification of the Series Structure of Polynomial Nonlinearity

Identification of the structure of polynomial series representing the nonlinear stiffness
function g[x(t)] is carried out through probing higher order Volterra kernel transforms of

the system, which are obtained through subjecting the system to multi-tone excitation
forces. Such multi-harmonic signals can be readily simulated on a computer. An
electrodynamic shaker, connected to the computer through an analog to digital card and
an amplifier can be employed to provide excitation to the system. The present analysis is

restricted to a third degree polynomial, i.e.

g[x(®)] = kx(0) + kyx* () + K, X7 (£) (4.16)
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Identification is made between following cases:
) k,=0 and k,,k; #0

(ii) ky =0 and k,k, #0

(i) kL, ky, ks #£0

Considering a three-tone excitation

f() = Acosw,t + Bcosw,t + C coswst

in equation (4.1), with

glx(0]= kx(©) + kpx* (0) + kX’ ()

the response harmonic amplitudes at fundamental and combination tones of various

response components can be obtained (following equations 3.21-3.23) as

X1(wy) = AH (@) (4.17a)

X, (@, +»,) = ABH, (0,,®,) (4.17b)
34BC

X3(o) +w; +w3) = Hy (o, 0,,03) (4.17¢)

Equations (4.17) provide the basis for estimating the first and higher order kernel

transforms as
Hi(w)) =X (0,)/ A (4.18a)
H,(w,,0,)=X,(®, +w,)/ AB (4.18b)

X3(a)1 +Cl)2 +a)3)
(3ABC/2)

Hiy(wy,0,,03) = (4.18¢)

It is to be noted here, that above equations are based on the condition that the second
order frequency combination (@; + ®,) is distinct in its value from other second order
frequency combinations. Similarly the third order frequency combination (@; + @, + @)

should be distinct in its value from all other third order frequency combinations.
Although this condition is generally satisfied over the frequency range, there may be

certain frequency sets (w;,w,,w3) for which the frequency combination (@; +®,) or

(w1 + 0, + ®,) may become commensurate with some other frequency combinations. In
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such cases the second and third order kernel transforms can be obtained through

summing up the contributing terms from all commensurate frequency combinations.

Figures 4.6 and 4.7 show the second and third order kernel transforms H,(@;,®,)and
Hj(w,,0,,03) obtained from the numerically simulated response to the three-tone
excitation for the three cases of polynomial structures mentioned above. (These kernel
transforms have been plotted for a range of @, /w,and w, /w,, keeping w; /w,, fixed at
a value of 0.6). It is simple to distinguish the first case (k, =0 and ki, k3 # 0) from the
other two, by noting that the second order Volterra kemmel H,(@;,®,), is identically

equal to zero, over the entire frequency range in this case, as seen from synthesised
expressions of higher order kernel transforms given in equation (3.26), which are
rewritten here for easy reference.

Hy(@y,07) = ko Hy (@) Hy (@03) Hy (@ + @,) (4.19)
H3(@1,049,03) = Hi(0)Hi(07)H{ (03)H (@0 + @5 +@3) *

. 4.20
[%kZZ{HI(CDI'*'wZ)J“HI(a’Z +@3)+H1(a’1+@3)}-k3} (320

The equations (4.19, 4.20) above can also be referred to similarly recognise second order
combination peaks at @; + @, = ®,, @, + w3 =®, and @, + @3 =w,,, in the third order
kernel transform map of Hj(w;,w,,®3) for cases ii) and iii). These combination peaks

can be seen to be absent in case i). These characteristics distinguish the symmetric case 1)

from cases ii) and iii).

Distinction can be made between the cases ii) and iii) by further investigating the third

order kernel transform, H;(w;,®,,3). Figures 4.8(a),(b) show the third order kernel
transform H;(@,,w,,®,), with @3 = @,, for cases (ii) and (iii) respectively. Both plots
show peak values of the kernel transform at frequency combinations

@ o=0,,, 0;=0,

(b) o =w, , ;=0

© w;=0 , o, =0,
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It is to be noted that the peaks in cases (b) and (c) are identical due to reasons of
symmetry. Distinction can be made between cases (ii) and (iii) by a comparison between
the peaks of cases (b) or (c) with that occurring at the frequency combination (a). Using

equation (4.20), the ratio of these peak values becomes

H;(0,0,,0,) _ H(OH,o,)|#H,@,) + 2H,00,)}- bk, / 6]

421
H3(wn7wn’wn) Hl(a)n)Hl(3wn)l_6Hl(2a)n)—k1k3/k22_| ( )
For k3 = 0, the peak ratio becomes
H3(0,0,,0,) _ H{(OH Qo,)[{4H) (@,) +2H,20,)]] 422)

H3 (0,0, 0,) Hy(@,)H,Go,)[6H,20,)]
Noting that for small damping, H,(@,)>> H;(2w, ), equation (4.22) can be further

simplified as

H3(0,0,,0,) _ H(OH,20,)[4H,(@,)]
H3(wn’wn’wn) Hl(wn)Hl(Swn)[6Hl (20);1)]

~5.33 (4.23)

Similarly for k£, =0, and assuming damping to be very small

H3(Oswn’a)n) _ HI(O)Hl(za)n) ~5

H3(wn:wn>a)n) - Hl(a)n)Hl(?,a)n) 33{ (4.24)

Thus the peak ratio will vary between a maximum value of 5.33 for £, =0 to a low value
of 533¢ for k,=0. This can be seen in Figure 4.9, in which the peak ratio

H;(0,0,,0,)

is plotted as a function of non-dimensional stiffness ratio k k3 / k3, for
H3(wnswn’wn)

a typical damping ¢ =0.01. It can be seen that the peak ratio is high and nearly constant

at 5.33 up to a value of kjks/k% equal to 0.01 and a system showing such characteristic
can be deemed to be belonging to case ii), with the cubic term zero. The peak ratio is low
and nearly constant at 0.0533 for value of k&5 / k22 larger than 1000.0, categorising the

system to case i). System giving values of this peak ratio somewhere in between can be

seen to belong to case (iii), where both square and cubic powers of x(¢) are present in the

nonlinear restoring force function.
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To obtain the peak ratio experimentally, response harmonic amplitude component
X3(2w,) is filtered from the third order response component x;(¢) by employing a
three tone excitation  f(f) = Acoswyf+ Bcosw,t +Cceoswst  with @ =0,
w, =w,, ®3=0,. Similarly response harmonic amplitude component X;(3w,) is
filtered from x,(¢) for the case w, =w,,», = »,,w; = w, . Considering the fact that

these response harmonics can be generated by several commensurate frequency
combinations, the amplitudes are related to the third order kernel transforms, through
summing up all the coefficients contributed by each commensurate frequency

combination, using equation (3.23), as

34ABC 3ABC 3A4B?> 34C* 34B? 34C?
X3QRw,) = + + o +
3( n) [ 2 2 4 4 4 + 4 H3(Oaa)n:a)n)
348 34C? (#2)
::|:3ABC+ + 2 H3(O,60n,60n)
and
43 B¥ C® 34BC 34B%* 34C*
7 T AR TN 4
X;6w,) = ) ; 3 > Hy(w,,0,,0,) (4.26)
34°B 34°C 3B*C 3BC
+ + +
4 4 4 4

Thus the kernel transforms H;(0,0,,®,) and H3(®,,®,,®,) can be obtained from

equations (4.25, 4.26) above and the peak ratio can be computed for determining the

polynomial structure among the cases (i), (ii) and (iii).

4.5 Remarks

The nonlinearity identification scheme is restricted to making distinctions between
polynomial and non-polynomial forms and further between symmetric and asymmetric
polynomial forms and their series structure. Classification within non-polynomial forms
has not been attempted. The possibility of employing time Volterra kemels for such

classification however, can be explored.
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CHAPTER 5

PARAMETER ESTIMATION IN
SINGLE-DEGREE-OF-FREEDOM SYSTEMS

The parameter estimation procedure has been developed for systems containing
polynomial form of nonlinearity. For such systems, as seen in Chapter 3, higher order
Volterra kernel transforms can be synthesised in terms of the first order kernel transforms
and the nonlinear parameters of the polynomial. The synthesis relationships along with
measurements of the first and higher order kernels can be employed to determine the
unknown parameters. Volterra series, being an infinite power series, however, suffers
from the inherent limitation of truncation error and convergence. Emphasis has been laid
here on addressing these issues rigorously, while making measurements for the higher
order Frequency Response Functions (FRFs). The quality of FRF measurements and
subsequent processing is a function of system nonlinearity, which is unknown. The
convergence of the series can also be ascertained only if the magnitude of nonlinearity is
known. A procedure based on recursive iteration is therefore suggested in this chapter to
deal with these aspects in an integral manner. Harmonic excitation is employed and
measurements of the first and higher order response harmonics are obtained. Single term
approximations are initially applied to these measurements to obtain preliminary
estimates of the kernels. The number of terms is increased up to the convergence
threshold in the approximations through recursive iteration to refine the estimates. A
detailed convergence analysis of response harmonic series is presented and a critical non-
dimensional nonlinear parameter is defined as a function of excitation level, excitation
frequency and number of series terms. A method of selecting the excitation levels is
suggested for minimum error in the response harmonic series approximation. Signal
strength and series approximation error of higher order response harmonics is
investigated over the frequency space and a guideline is developed for selecting the

excitation frequencies. The procedure is illustrated with numerical simulations.

47



5.1 Recursive Iteration

A single-degree-of-freedom system with polynomial form of nonlinearity under single-
tone harmonic excitation is considered. The governing equation is

mi(t) + cx(t) + g[x(¢)] = Acosw ¢ (5.1
with

glx(®)] = kyx(t) + kyx (1) + kx> (1) + ...

Considering the response harmonic series (3.14) up to a finite number of terms, k, and

rearranging for the first three response harmonics, one obtains

k
Hy(@) = %[X(w)—za[ (w)} (5.22)
i=2
2 k
H,y(o,0)~ F[X(Za)) ->.0o; (250)} (5.2b)
i=2
4 k
Hy(o,0,0,) ~ F[X(%o) =Y o (30))} (5.:2c)
j=2

The higher order kernel transforms, H,(w,®) and H;(w,w,) are related to the first

order kernel transform and nonlinear parameters (using equation 3.18b) as

H,(0,0) =-k,H} (@)H,(20) (5.3a)
Hiy(o,0,0)= H13 (w)H, (3a))[2k22H1 Lw) -—k3] (5.3b)
k
The truncated series Zai (nw) in equations (5.2) are computed at every step of iteration
i=2

with the estimated values of first order kernel transforms, H;(w), and nonlinear
parameters, k, and k5, obtained from the previous step. Employing equation (5.2), linear

and nonlinear parameters are re-estimated and the iteration is continued till the estimates

converge within a specified limit. For a typical cubic nonlinearity case with
glx(®)]= klx(z‘)+k3x3 (), the parameter estimation algorithm involves the following

steps.
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Step-I: System is excited at frequencies, w;, with @, varying over a frequency range
encompassing the natural frequency, w,, of the system. First response harmonic
amplitude, X(@;), is filtered from the overall response, x(f), which gives the
preliminary estimate of first order kernel transform as

H{(w)=Xw)/4; , | i=L..N 5.4

A curve fitting procedure (Ewins, 1984) is employed to obtain the best fit FRF curve é.nd
preliminary estimation of linear parameters is made.

Step-II: System is excited at frequencies, w;, j=12,..N,where the third response
harmonic, X(3w;), is distinct and measurable (As shown in next section, the third
response harmonic becomes distinct around one-third of natural frequency). Employing
equation (5.2c), preliminary estimate of nonlinear parameter, k;, is obtained through

regression between the estimated third order kernel transform and its synthesised kernel

factor, I';(@ ), using the following relationship

Hy(w;,0;,0;)=kl3@;) (5.5)
Where
T3(@;)=-Hi (@;)H,(3o)) (5.6)

k
Step-III: The series ZO',- (w) is computed with the H;(w) values taken from the best fit
i=2

curve estimated in Step-I and the nonlinear parameter, k,, estimated in Step-II and

substituted in equation (5.2a) to obtain new estimates of linear parameters.

k
Step-IV: The series Zai (Bw)is computed and substituted in equation (5.2c) to re-
i=2 ,

estimate the nonlinear parameter £, .

Iteration is continued till the estimate of nonlinear parameter, k,, converges within a

specified limit. The algorithm is general in nature and can be readily extended to a system
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with square or combined square and cubic form of nonlinearity. However, for accurate

and convergent parameter estimation the following issues need to be addressed
1) selection of appropriate excitation levels, A4;, in equation (5.4) for error

minimization in first response harmonic measurement,

ii) selection of limiting number of terms, £, in the equations (5.2a,c) for convergent
Volterra series application,

iii)  selection of appropriate excitation frequency and amplitude for good

measurability of higher response harmonics.

In the following sections, a detailed error analysis and convergence study is carried out to
address the first two issues mentioned above. Measurability of the higher response
harmonic signals is then studied for deciding the excitation frequency and excitation

level.

5.2 Convergence and Error Analysis

The convergence study has been restricted to the case of a Duffing oscillator under a

single-tone harmonic excitation

mii(t) + cx(f) + kyx(t) + k3 x (f) = Acos oot (5.7)
Defining non-dimensional parameters

T=0,! wn=m ¢=c/2mw, n=x/Xy

X, =Alk A =k A2 K r=olo,

equation (5.7) is rewritten as

n'(x) + 26 77'(2) +n(2) + A1’ (z) = cosre (5:8)
(") denotes differentiation with respect to 7. The non-dimensional response 7(7) can be
expressed as

n(z) =|Z(r)| cos(r T+ )+ |Z(3r)| cosGrz +y3) + |Z(5r)|cos(Srz +y5)+...  (5.9)

with nth response harmonic amplitude, Z(nr), given by
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Z(nr) =Y o;(nr) (5.10)

i=1

The individual series term, o;(nr), becomes

n+2i-2

1 n+2i-2 - o
Gi(nr)=2(~2—) MERRC, L HSET () (5.11)

The non-dimensional synthesis equations, for higher order kernel transforms

H :Eﬂé‘l (7) , following the harmonic probing procedure (equation 3.18) become
H () =1/(-r* +1+ j2¢7) forn=1 (5.122)
and

AsH(r

)
HP(r)y=— P9 Z {nl qu H’zl"h (r)}* {nz qu H:; 92 (r)}* {”3 Cqs H}:s,% ()

n
Cq pitq;=n;
n+ny+h3=n

forn>1 (5.12b)

Since practical estimation of a response harmonic, incorporates only a finite number of
terms of the series (5.10), convergence of the response harmonic is specific to the number
of terms included in the analysis. Confining the power series to include a finite number of

terms, &, the approximation for the nth harmonic can be denoted as
k
kZ(nry =Y o(nr) (5.13)
i=1
and the relative error between the above approximation and the exact value of the
response amplitude of the nth harmonic is
re =|[Z(nr)—, Z(nr))/ Z(nr)| (5.14)
For absolute convergence of a series, its succeeding terms should continuously decrease.

However, the response series, Z(nr), exhibits conditional convergence characteristics

and the error, e, is seen to depend on the number of series terms, k, excitation

frequency ratio, , and on the non-dimensional nonlinear parameter A; .

qENRIH FT AT DAFT TETFTAY

qTETT SVt »1 gggsgﬂt
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5.2.1 Convergence Analysis

The response n(r) of the governing equation (5.8) is computed numerically in non-
dimensional form, through fourth order Runge-Kutta method. Amplitudes of various
response harmonics Z(r), Z(3r)etc are obtained through harmonic filtering of the
response 77(7) . This is termed as ‘exact’ response. Figures 5.1 (a), (b) typically show the
non-dimensional response 7(r) and the exact response harmonic amplitudes for non-

dimensional frequency = 0.35 and non-dimensional nonlinear parameter 2; = 0.04. The

Volterra series response is synthesized by considering the series in equation (5.10) up to &

number of terms. Each series term, o;(nr), i=12,.,k is computed from equation

(5.11), in which the higher order kernel transforms H ,’:_’éﬂé‘l (r) are obtained by step-by-

step reduction into lower order transforms using (5.12b). The series form of response

amplitude Z(r), following equations (5.10, 5.11 and 5.12b), becomes

Z(ry=H;(r)+ %H3 (r,r,—r) +—§—H5 (ryryr=r,—r)+...

. ZHE M+ OH )| (619
= H, (r)—Z/13Hl3(r)H1(—r)+/1§ +...

+~1€Hf‘<r>HE<—r>Hl (3r)

Similarly series form of response harmonic amplitude Z(3r)becomes

Z(@3r)= %Hg(r,r,r) +ISgH5(r,r,r,r,—r) F...
9
2 —H} () Hy (=) H (3r) (5.16)
== TH (VH G+ 45| +o
J -~
+ 2 HYH (NH Gr)

Convergence of Volterra series representation of overall response 77(7) is shown in

Figure 5.2 (a), (b) through phase-plane plots for first two terms for a typical non-

dimensional frequency »=0.6and for two different values of nonlinear parameter

A3 =0.05 and A3 = 0.1. These response components are constructed using
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n(z) =m (@) +13(0) +... (.17)
with

71 (7) = o1 (r)e’"™ + complex conjugate term

73 () = 01 (3r)e’>™ + &, (r)e/"" + complex conjugate terms

where o(r), o1(3r) and o, (r) are defined in equation (5.11).

Convergence of the Volterra series response can be graphically represented by the
proximity of the trajectory to that of response obtained from numerical integration. It can
be seen that the phase plot of a two-term series is closer to the exact one than the single-
term series, indicating a converging trend. A comparison of Figures 5.2 (a) and 5.2 (b)

shows that better convergence is obtained with a lower value of A5 . However, the phase-

plane comparison can be used for convergence study of overall response only.

Convergence of individual response harmonic amplitudes, Z(nr), is analysed by
| computing the relative errors ;e using equation (5.14) for various values of non-

dimensional nonlinear parameter A;. The variation of relative errors, je and je,

between the ‘exact’ and k-term approximations of the harmonics for various values of &

and non-dimensional non-linear parameter, A5, have been plotted in Figures 5.3 (a) and

5.3 (b) for a typical non-dimensional excitation frequency, » =0.6. The errors can be
seen to decrease up to a certain number of terms in the approximation, beyond which they

display an increasing trend. The number of terms up to which the error, for the nth

harmonic and a given A5, shows a decreasing trend can be denoted as "k,,; . It can be

observed that for A;= 0.08, k.., =4 in the case of the 1** harmonic and the optimum

number of terms in the response series should be four. Similarly three term series is

optimum for representing the 3" harmonic.

Approximation errors have been shown as a function of the nonlinear parameter 4;, for

k=1 to 4, in Figures 5.4(a), (b). The plots in Figures 5.3 and 5.4 can be utilised to define
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a critical value j A, of the non-dimensional nonlinear parameter, to get convergence in

a k-term approximation of the nth harmonic. It should be noted that the non-dimensional

nonlinear parameter A3, involves the nonlinear stiffness term k5 as well as the harmonic

force amplitude 4. Critical values /A, can be suitably employed to decide the

excitation levels in experiments.

The critical value, ;A4 , can be defined as the maximum value of A3, for which

ze< ;_fe. For a four term approximation of the 1* harmonic, the critical value ;A.,, of

crit >

the nonlinear parameter is seen to be 0.082 (Figure 5.4a), while for a three term

approximation 31/7.0,,-[ = 0.098 (Figure 5.4a). Similarly, for four-term approximation of the

3™ harmonic, the critical value 4316,,-, is 0.075 and for three term approximation 33 Aerit18

0.083 (Figure 5.4b).

The critical values klﬂm-, and ,f’lm-, (for harmonics » = 1 and 3) are plotted in Figures

5.5(a), (b) respectively, for k ranging from 2 to7. As shown, these figures help to define
the zones of convergence and divergence of a response harmonic as a function of the

non-dimensional parameter A; and the number of terms, %, in the approximation. As an
example, if the value of the non-dimensional nonlinear parameter A3, of a given system
is 0.1, then only the first three terms, i.e. £ = 3, in the approximation, will give a
converging solution for the 1** harmonic (Figure 5.5a). For a lower value of 13 = 0.07,

converged solution is obtained till six terms (k = 6) in the approximation. Similar pattern
can be observed in the case of the 3™ harmonic, given in Figure 5.5(b). It is obvious that
better accuracy can be obtained with lower values of A3, since more number of terms can
be included in the approximation of the response harmonics. Figures 5.3, 5.4 and 5.5
pertain to a non-dimensional excitation frequency, » = 0.6. The excitation frequency is

varied over a range and the critical values of A3 are plotted for £, ranging from 2 to 7, in

Figures 5.6a-f for the 1% harmonic and Figures 5.7a-¢ for the 3" harmonic. It can be seen
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that approximations with low values of % either completely miss out on the 1/3 and 1/5

subharmonics at r = 0.33 and r = (.2, respectively, or give non-converging solutions.
Critical values ;A can be seen to be low at these frequencies. This fact is discussed in

the next section.

5.2.2 Ratio Test for Convergence
The procedure for finding the critical value, of the non-dimensional parameter, through

numerical simulation, needs iterative computation over a large number of values of ;.
Alternately, ;4. can be determined through application of a simple ratio test to the

power series (5.10). The critical non-dimensional parameter, ;A , can be defined, for a

crit ?

k-term approximation of the nth harmonic, as the limiting value of A;, for which

(o) (I’ZI‘)

=1.0 5.18
Oy (nr) ¢-18)

Application of the above with equation (5.11) gives

n+2k-2 n+k-1,k-1
1 CraH iy () l -1

A n+2k-4 k=252 ;|
4 CraHI5 2 ()

for A3 = PAL . (5.19)

Employing equation (5.12b), to express the higher order kernels, in the above, in terms of

lower ones, the ratio can be seen to be a function g, of the kernel transforms

H,(r),H;(3r),H;(5r) ...etc., and proportional to A3, i.e.

| e, o) .
T ke =43 gx[H(r), H,(3r), H,(57).... ] (5.20)
4 n+2k 4Ck-—2 H::éck-zlk 2(r)|

providing ;A as

kAerie =1/ g [Hy(r), Hy(37), H{ (57).....] (5.21)

Using equations (5.19) and (5.20), A, can be computed as
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n+2k-4 n+k-2,k-2
CerHpppy @ )l

ny 4 522
k “rcrit 2%—2 k=1 k— ( 22)
T H ') | Jg=1
For the 1% and 3™ harmonics, putting » =1 and n = 3, one obtains
2k-3 k-1,k=2
1 _ Ci2 sz_3 (r)l
ket =451 ] (5.23)
CreaHy oy () I P
2k-1 k+1,k=2
P = R ) (5.24)
cri 2k+1 k+2,k—1 ‘
¥ Ck-lHZI-:H (r)‘;%___]

(the sub-script on the right hand side of the above expression denotes that the ratio has

been computed at a value of 1; =1)

The value of fA,,; obtained from ratio test is an approximation of its correct value,
which is obtained through the error divergence criterion, discussed earlier and illustrated
through numerical simulation. However, the approximation of ;A through the ratio

test is fairly good and has been shown, along with the numerically simulated one, in

Figures 5.6a-f and 5.7a-e, for the 1% and 3™ harmonic respectively. As k increases, the
critical value A, obtained from ratio test gets closer to the exact one obtained from
error simulation. For k >3 ratio test gives very accurate results over a wide range of
excitation frequencies. The ratio test also helps to understand the low values of fA4,,; at

the natural frequencies and sub-harmonics. It can be seen, from equation (5.11) that the

oy (nr)
Oy (nr)

ratio is of the order of A;|H, (nr)|3 and the term |H,(nr)| assumes a large

value for » = 1/n, making ;' A, too small to satisfy convergence criterion given by

equation (5.19). Figure 5.6 also shows a comparison with the results of Tomlinson
(1996), who carried out a ratio test on truncated expansion of equation (5.10) for higher
order kernel transforms. Tomlinson’s formula gives reasonable values of the critical

parameter only at » = 1 and for k£ = 2, i.e, for a two-term series approximation. Away
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from natural frequency and for & >2 the results deviate considerably from the exact
ones, since Tomlinson ’s formula employs a truncated form of o;, by considering their
first terms alone. However, subsequent terms of o, can be of the same order as its first
term, as they may involve kernels of the same order. Also, Tomlinson computed the error
by averaging over a range of excitation frequencies. Such averaging may entail a large
error, since the kernels are frequency sensitive and the critical value of the nonlinear

parameter A, should be treated as specific to the excitation frequency. Moreover,

Tomlinson’s analysis was restricted to the first harmonic Z(r) and its convergence was

taken to conclude the convergence of the Volterra series.

5.2.3 Error Analysis

Convergence analysis gives the limiting number of terms in the Volterra series for
convergence. The consequent error in the estimates is dependent on this truncation and is
a function of the excitation frequency and amplitude. Figure 5.8(a) shows the error
variation, for a two-term approximation in the first harmonic amplitude Z(r), over a

frequency range, for constant excitation levels (i.e. for constant A5 values). It can be seen

that the error increases with the increase in excitation amplitude and becomes very large

near the natural frequency (i.e.,r =w/w, =1). Figure 5.8(b) shows error for different
number of terms in the series for a given excitation level, 43 =0.005. It is seen that the
high error near natural frequency increases further with fnore terms in the series. This is
because the excitation level selected in this case is high and correspondingly A; is higher

than the critical value near natural frequency (Figure 5.6). Similar error characteristics for

third harmonic amplitude Z(3r)are shown in Figure 5.9.

Reduction of the error in the vicinity of the natural frequency of the system would require
a reduction in the amplitude of the excitation force. Variation of the excitation amplitude
over the frequency range in such a manner that a constant error level is maintained
throughout the frequency range can be suggested for consistency in results. Figure 5.10

shows the required variation of excitation level in terms of the non-dimensional nonlinear
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parameter A; over the frequency range for constant approximation error in the first
response harmonic series. Obtaining such a plot during a practical application for
parameter estimation is difficult for it requires a-priori knowledge of the nonlinear
parameter itself. However, the excitation amplitude can be varied over the frequency
range such that the first harmonic response amplitude is maintained constant. Figure
5.11(a) typically shows such a variation of excitation amplitude for obtaining constant
response harmonic amplitude. The consequent response is depicted in Figure 5.11(b) and
Figure 5.11(c) shows the resultant error for different number of series terms. It can be
observed that while the error is relatively higher near the natural frequency (10% error
with £=3), it is significantly less in compared to what would have resulted for the

constant excitation level case of Figure 5.8.

5.3 Measurability of Higher Order Response Harmonics

Higher order response harmonics for weakly nonlinear systems will be of much lower
amplitude compared with the fundamental harmonic. These higher order harmonics may
not be significantly stronger than background vibration or measurement noise. This is
illustrated in Figures 5.12 (a), where non-dimensional third order response harmonic
amplitude Z(w; + @, + @) is plotted for a range of w, and @,, while maintaining a
constant @3 /w, =0.2. It can be seen that the third order harmonic Z(w; +®, +@3) is
distinct along the line 4 representing the frequency combinations @, + @, + @3 = ®,,. On

other regions of the frequency floor the response strength is significantly small. Better
signal/noise ratio would therefore be achieved for the third order harmonic

measurements, if carried out along the line A, indicated in Fig. 5.12 (a).

A single-term approximation of ‘the non-dimensional response harmonic

Z(w, +w, +w3) can be obtained as

Z(a)1+w2 +Q)3)z%H3(601 /(Un,a)z /wn,w3 /a)n) (5.25)

69



3™ response harmonic
(measured)

- o /o,

a) Exact response harmonic amplitude

3™ response harmonic
(1-term series approx.)

@,/ w, 0% o, /o,
b) Single-term series approximation

RS e B U P R
<]
E .
2
@, / ®, LI @, / @y,
c) Error in single-term series approximation

Figure 5.12  Third harmonic amplitude, Z(@, + @, +®3) and error in single-term
series approximation. [y /@, =0.2; 13 =0.01]

70



3" Response harmonic
(measured)

w, /o, o< o, /o,

a) Exact response harmonic amplitude

{

y)

L

L

y)

rl

2

3™ response harmonic
(1-term series approx.)

A
wy /o, v o /o,
b) Single-term series approximation
<
=
i3}
A
@, /o, > o /o,
©) Error in single-term series approximatior

Figure 5.13  Third response harmonic amplitude, Z(@; + @, +®;3) and error in
single-term series approximation. [co3 lw,=04; A3 =0.0 1]

71



Denoting non-dimensional frequencies
n=o/w,, rn=0/w, and nr=0/e,

equation (5.25) becomes
3
Z(a)l +w2 +a)3) = -2—H3(r1,r2,r3)

where the third order kernel transform can be synthesized, similar to equation (3.26), for
a Duffing oscillator) as

H3(ry,ry,r3) = A3 Hy () Hi(r))Hi (1) H (1 + 1, +13)

with the non-dimensional first order kernel transforms given by equation (5.12a). The
single-term approximation of the third harmonic has been plotted in Figure 5.12 (b) over
the frequency range. Comparison between Figures 5.12 (a), (b) shows a good correlation
along the frequency combination line A. Figure 5.12 (c) gives the error between the
‘exact’ response of Figure 5.12 (a) and the single term approximation of Figure 5.12 (b).
The parameter estimation procedure suggested in the earlier section involves equating
these two figures for extraction of the nonlinear term. It is apparent that the estimation
error can be kept low, while maintaining high signal/noise ratio if measurements are

made along line 4 representing the frequency combinations @; + @, + w3 = @, . Figures

5.13 (a), (b), (c) show similar results for frequency ratio @, /@, = 0.4 .

In case of single-tone excitation, it is obvious from above that third order response
harmonic, X(3w), should be measured at or close to 3w =w,, ie, ® =w,/3. The
measurability of the third response harmonic in case of a Duffing oscillator under single
tone excitation is shown in Figure 5.14 (a), (b). This has been done by defining a
parameter as Measurability Index, MI(mw) , which is the ratio of mth response harmonic
amplitude to the first harmonic amplitude, i.e.,

MiI(mw)=X(mo)! X (@) (5.26)
Measurability is maximum at one-third of the natural frequency and this maximum value
can be termed as Peak Measurability Factor. Figures 5.14 (a), (b) also show the

dependence of Peak Measurability Factor on excitation amplitude and damping.
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From Figure 5.7, for a k-term series approximation of X(3w), the critical value ixlm-t
is found to be of the order of 0.01 for 1<k <5 (£ =0.01). It can be seen from Figure
5.14(a) that the excitation level corresponding to this critical value of A,, gives a

measurability as high as 10%. Figure 5.9(b) shows that at this excitation level

(A3 =0.01), error in X (3w)approximation can be reduced to 3% for three-term series

and to 1% for a four term series. It is suggested to measure the third harmonic at a set of
frequencies very close to one-third natural frequency and on both side of it. The
excitation level is kept constant for this close frequency band and can be set to a desired

peak measurability.

5.4 Detection of the Sign of Nonlinear Parameter

The nonlinear parameter k5 is obtained through the linear regression of equation (5.5).

The regression is done with the magnitude of the complex quantities and hence the
estimated values represent only the magnitude of the nonlinear parameters and not their

sign. Sign of the nonlinear parameter, k3, can be detected through observations of change

of sign of real part of measured third harmonic amplitudes during transition of excitation
frequency across one-third of the natural frequency. Rewriting equation (5.6) for

synthesis of the kernel factor

[3(30) = -Hj (0) H, 30), (5.27)
one can note that since for @ <w, /3, both H;(w)and H;(3w) have positive real parts
(equations 3.18a) the kernel factor I';(3w) will have a negative real part. Consequently,
the estimated third order kernel transform H;(w,®,®) given by (equation 5.5) will also
have a negative real part for positive k;. For w, >w>w,/3, H|(w) will have a
positive real part while the real part of H;(3@) will bear negative sign. The kernel factor
I'3;(3w) and Hs(w,w,®) consequently, will have a positive real part for positive value of

the nonlinear parameter ;.
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5.5 Illustration

The parameter estimation procedure is numerically illustrated here for a Duffing

oscillator given by equation (5.7), with following parameters
k =1.0x10" N/m m=10kg c¢=64.3Ns/m ky =1.0x10" N/m”>.

The above stiffness parameters are selected to correspond to a typical rotor bearing
. Vsystem with rolling element bearings (Khan, 1999) and the damping coefficient is

selected to correspond 1% damping ratio (i.e. £ =0.01).

5.5.1 Preliminary Linear Estimates
Numerical simulation is carried out by solving the equation of motion (5.7), using 4™

order Runge-Kutta integration algorithm to obtain the response, x(¢). Response
harmonics X (@) and X (3w) are separated by harmonic filtering. The first response

harmonic, X (@), is measured with excitation level adjusted so as to give a constant

response amplitude of 1.0x 10 m. A wide range of excitation frequency is considered
from 50Hz to 750Hz, covering the natural frequency @, = 503 Hz. Figure 5.15(a) shows
the excitation amplitude employed at various frequencies to obtain the constant harmonic
amplitude X (@) shown in Figure 5.15 (b). Preliminary estimate of the first order kernel
H,(w) from X(w) using equation (5.2a) is plotted in Figure 5.15(c). Linear parameters
are estimated through curve fitting equation (3.18a) over the estimated H,(w) values.
The preliminary estimates are

ky =1.0074x10" N/m, m=0.9999 kg, ¢=0.01055.

5.5.2 Nonlinear Estimates

For estimation of nonlinear parameters, the plot of third harmonic Peak Measurability
Factor is obtained for various excitation amplitudes (Figure 5.16a). Peak Measurability
Factors are typically chosen as 2%, 5% and 10% and the excitation force amplitudes
required for these measurabilities of the third harmonic are read from Figure 5.16 (a) to

be 0.35N, 0.565N and 0.875N respectively. The recursive iteration method is illustrated
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for the three cases of measurability chosen above. Four excitation frequencies (164.0 Hz,
166.0 Hz, 170.0 Hz and 172.0 Hz) are selected close to one-third of the natural frequency
(@,/3=167.7Hz) for the measurement of third response harmonic. Figure 5.16 (b)

shows the measurability variation in the neighborhood of this band of frequencies.

Case (i) (2% peak measurability; Force Amplitude = 0.35N)
Harmonic excitation of amplitude 0.35N is applied at the four selected frequencies and

third response harmonic amplitude X(3w) filtered from the response is shown in Figures
5.17 (a-d). Preliminary estimation in accordance with equations (5.5) and (5.6), gives the
value of the nonlinear parameter, k3 =1.0332x10'"N/m>. This estimate is in error by
3.32%. With subsequent iterations, this estimate converges to a value
ky =1.0053 10" N/m3. The convergence pattern is displayed in Figure 5.18 (a).
(Iteration is stopped when the change in successive estimates of k; becomes less than

0.1%). Significant improvement in the estimated value is achieved with iterations,
whereby the error can be seen to come down from 3.32% to 0.53%. The final estimate of
the first order kernel transform, H,(®), is shown in Figure 5.18 (b) and the estimated

linear parameters are:

ky = 0.9998x10" N/m m=0.9999kg ¢ =0.01024

Case (ii): (5% peak measurability; Force Amplitude = 0.565N)
Figures 5.19(a-d) show the response spectrum at the four frequencies selected for

measurements. The estimate for the nonlinear parameter £,, in this case, converges from

a preliminary value of 1.0309x10'° N/m? to a final value of 1.0065x10' N/m>, as
shown in Figure 5.20 (a). The errors are 3.09% - for the preliminary value and 0.65% -

for the final value. The final estimate of first order kernel transform, H, (@), is shown in
Figure 5.20(b) and the estimated linear parameters are

k; =0.9998 x 107 N/m m=0.9999 kg ¢ =0.01023
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Case (ii1): (10% peak measurability; Force Amplitude = 0.875N)
Figures 5.21 (a-d) show the response spectrum at the four selected frequencies. Estimate

of the nonlinear parameter k, converges from an initial value of 1.0520x10'° N/m> to a

final value of 1.0146x10' N/m?as shown in Figure 5.22 (a). The estimation error is
5.2% for the preliminary value and 1.46% for the final value. The final estimation of first
order kernel transform is shown in Figure 5.22 (b) and the estimated linear parameters are
ky = 0.9996 x 107 N/m m=0.9999 kg - ¢=0.01029

The summary of the results in the three cases is given in Table 5.1.

Table 5.1 Estimates under different measurability conditions
k, x10’N/m | m kg 4 ky; x10" N/m’

Preliminary estimates 1.0074 0.9999 0.01055 | 1.0332, 1.0309, 1.0520
Final estimates 0.9998 0.9999 0.01024 1.0053
Case (i)
Final estimates 0.9998 0.9999 0.01023 1.0065
Case (ii)
Final estimates 0.9996 0.9999 0.01029 1.0146
Case (iii)

It is evident that while significant improvement in estimates is achieved with iteration,
the error is strongly linked to the excitation amplitude used in third harmonic
measurement. A higher excitation level (Force Amplitude = 0.875 N), while providing a
setter measurability of 10% also gives a relatively high error of 1.46%. The excitation
amplitude of 0.35 N gives relatively less error of 0.53%, but reduces the measurability of
hird harmonic to 2%. Estimates of mass and stiffness parameters do not show any
iignificant trend with iterations. Damping estimates, however get refined with iteration.
Chese improvements in damping estimates play a numerically critical role during the

stimation of the nonlinear parameter £;.
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5.5.3 Convergence Problem at Higher Response Levels
Accuracy of estimates gets improved if more number of terms can be included in the
approximation of a harmonic (equations 5.2). The number of terms, in the approximation

is however limited by the convergence criterion. Consider two experiments — (i) a case
where the response amplitude, X (), is maintained constant at 1.0x10~" m , throughout

the frequency range of measurement, (ii) X (), is maintained constant at 2.0x10~" m.

For the two cases, the required force amplitude variation with frequency is plotted in
Figure 5.23. The force amplitude variation required for achieving convergence with a

four-term approximation of X (@) is also shown in Figure 5.23. It can be seen that for the

first experiment with lower constant response level, the excitation amplitude employed is
less than the critical limit throughout the frequency range, indicating that recursive
iteration could employ at least four series terms for all the excitation frequencies.

Consequently the estimation accuracy is expected to be good, as seen in the previous
section. For the second experiment, with a higher value of response level at 2.0x107 m,
the series does not converge at the natural frequency (A3 >} A, ). The final estimate of
the nonlinear parameter in this case (under 2% measurability condition) is found to be
k3 =1.2468x 10" N/m® and the error is 24%. Thus the error in the nonlinear parameter

estimate is strongly related to the convergence criterion discussed in section 5.2.

5.5.4 Influence of Measurement Noise
To investigate the robustness of the iterative procedure against the external noise, white
noise is generated and added to the response time history. Noise to signal ratio is

typically selected as 5%. Figure 5.24(a) shows a typical response time history for

response level of 1.0x 10”7 mand Figure 5.24(b) shows a randomly varying white noise
with noise to signal ratio of 5%. The combined time history is shown in Figure 5.24(c).

The noisy response data are then processed for the estimation of the parameters. Linear
parameters are found to be

ki =0.9998x107 N/m m = 0.9999 kg ¢ =0.01028
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Estimated values of the nonlinear param eter £, , in presence of 5% noise, under different

measurability conditions are tabled below along with the estimation values under zero

noise condition obtained in section 5.5.2.

Table 5.2 Effect of noise in parameter estimation

Measurability 19 3 19 3
Condition k3 ,. x10 N{m k3‘, x10 N/m
- with 5% noise with zero noise
Case (i) 1.0069 1.0053
Case (ii) 1.0080 1.0065
Case (iii) 1.0150 1.0146

The results in the above table indicate the robustness of the estimation algorithm in the

presence of measurement noise.

5.6 Comparison with Response Component Separation Method

A comparison of the present procedure is made with the parameter estimation method
suggested by Lee (1997), which is based on Response Component Separation technique,

discussed earlier in section 4.1. The individual response components x, (£), X, (), X3 (£)-....
(equation 4.2),are separated from the overall response x(f), employing equation (4.3).
The first order kernel transform, H;(w) and third order kernel transform Hy(o,0,0)
are respectively estimated from the first harmonic content of response component x, (£)
and third harmonic content of response component Xx;(f), using the following
relationships.

Hy(w)=X(@)/ 4

H,(w,0,0) = (4/34°)X,(3w) . (5.28)
The nonlinear parameter is estimated through regression between measured third order

kernel transform, H;(@,w,®) and the third order kemel factor I3(3@), which is

synthesised (equation 5.6) with the estimated first order kernel transforms, H;(@). The

relationships (5.28) employed by Lee are based on single-term series approximations, and
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the results obtained through this method (Table 5.3) contain high error. These results

along with results obtained through the procedure developed in the present study (Table

5.2) are plotted in Figure 5.25.

Table 5.3 Estimate of nonlinear parameter by response component separation

Measurability
Condition

k;, x10"° N/m?
with 5% noise

k3, x10'° N/m?
with zero noise

Force Amplitude = 0.35N 1.04414 0.9938
Force Amplitude = 0.565N 1.0566 1.0565
Force Amplitude = 0.875N 1.4707 1.4791

5.7 Remarks

The parameter estimation procedure based on recursive evaluation of Volterra kernels,

presented in this chapter, can be expected to yield good nonlinear estimates, with suitably

designed experiments where excitation amplitudes and frequencies are chosen according

to the discussed guidelines. The estimation algorithm is robust against random

measurement noise and is more accurate than the response component separation method.
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CHAPTER 6

PARAMETER ESTIMATION IN
MULTI-DEGREE-OF-FREEDOM SYSTEMS

Analysis of multi-degree of freedom systems and output measurement, which involve
multiple stations, require concepts of cross-kernels (Worden and Tomlinson, 1997), in
addition to the direct kernels, as employed for single-degree of-freedom systems. In this
chapter, Volterra series response representation for a multi-degree-of-freedom system,
under a set of harmonic excitations, is developed. Generic expressions for response
harmonic amplitudes are presented and kernel synthesis formulations are developed. It is
shown that higher order direct and cross-kernel transforms are functions of the first order
kernel transforms and the set of nonlinear parameters, for systems with polynomial form
nonlinearity. The parameter estimation procedure based on recursive iteration, developed
for a single-degree-of-freedom system, is extended and illustrated here for a two-degree-
of-freedom system with square and cubic stiffness nonlinearity. Numerical simulations
and error analysis are presented for typical rotor bearing system parameters. Estimation is

carried out for various combinations of linear and nonlinear parameters.

6.1 Response Representation of Multi-Degree-of-Freedom System

For a multi-degree-of-freedom system, acted upon by forces f,(¢), f5(f),...at points
a,b,... the response at a station, j, is given by

D () = xD () + x5 (6 + x5 (1) + .. 6.1)
where, x,(,j ) (f)is the nth order response component at the jth station. First order response

component at the jth station is formed as a summation of responses due to all the first

order components resulting from each individual force and is expressed as

(1) = 0D (1) 4 x99 (1) + . 62)
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with

DV (ey= [T (2) fo(t = 2))dry 10 = (B @) fy - 7)dry ete.

-0
—0

The first order component can, therefore, be written as

() = zb [P @) £ ¢ -2y 63)
n=a,n,...~00

The kernels AY™ (x, )for 7=a,b,... etc. represent the linear impulse response functions,

and the corresponding kernel transforms are

Hl(j:”) (@) = J‘hl(jrn) (z, )e—jwm dr, (6.4)

The second order response component x{ (f) is given by

o= 3 _[J'héjznm)(fpfz)fm(f—Tl)fnz(l‘—Tz)dfldfz (6.5)

771=a,b,...772=a,b,...—oo —00
Kernels héj M) (7, 7,), for 7y =1, are called second order direct kernels whereas for

m # 1, , they are called second order cross-kernels. Fourier transforms of these direct

and cross-kernels give the respective direct and cross-kernel transforms as

HY") (o, 0,) = Ijh(f ) (7,7 )e"’(“’"‘*”’"‘)d‘c dr, for ny,n, =a,b,...  (6.6)

—00—00

Proceeding similarly the general nth order response component can be written as

[o]

0 0
D=3 Y Y [ [ R ey n) fy = 1) Sy, = T,)dT T
m=ab,...m=ab,... 1M,=a,b,...—0-0 —0
(6.7)
where the kernels 2V (z,,...,7,)represent the nth order direct and cross kernel

functions. The nth order kernel transforms are

H’('j:'h-..rl,,)(wl ,...,CO,,) - J‘ jh(.l B ’7,.)(2. )e—j(m‘rl+“‘+w"r")d7-'l---dT,, (68)

-0 0
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For m number of inputs, there would be m” number of nth order kernels for each

measurement location j and a system with N degrees-of-freedom would be characterised

by a set of Nm" number of nth order kernels. This shows that analysis of multi-degree-
of-freedom systems with multi-input excitation involves a large number of kernels.

However the number of kernels can be significantly reduced using symmetry

considerations as
b " )
) (21, 72) + PO (11, 73) > 20T (31, 1,)
j:aab B i .
K79 (21,75, 73) + K (2,79, 73) + B (1 25, 74) = 309 (2, 15, 75)

and so on. The rule of symmetry is also applied to the kernel transforms and all kernel
transforms with same set of frequency arguments are considered identical irrespective of

the order of arrangement of the arguments.

6.2 Response Structure under Harmonic Excitation

A multi-degree-of-freedom system with two inputs f,(¢) and £ (¢) is considered here for

general illustration of the response characteristics. For harmonic excitations
fa(t) = Acosaqt , f,(f) = Beosa,t

the response components at a coordinate, j, are obtained, using equations (6.7) as

xD () = ngU“’) (@)e!™ + ng(f‘“ (y)e’™

+ complex conjugates (6.9a)

(J) (6) = H(J ‘aa) (&,,~01) + H(J :bb) (@9,—@)
2 iy . B . 5
+ A—Hy'“a) (@, a)l)eﬂ“’" + —4—H§J'bb) (0y,0,)e” %

AB

H(jab)(a) » )e.l(wl"'wz)f AB H(Jﬂb)(a) - )e.l(“’l‘wz)t
2 2

+ complex conjugates (6.9b)
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(j)(t)_ H(j ) (@1, 01,0,)e 3 + 3? HYD) (@, 00 a2, )72
B3
+ —
8

L 34B% L aby jou , 3478 5
-—4-__ 3 (a)l,a)z,'-d)z)e 1 2 H(Jﬂa )(601,-0)1 a)z)ejd)zt

. 3
HY?) (4 St 3B” (bbb -
3 (92,09,0;)e = /(@,07,~0,)e/?

3A B
: 245 U)o o0 y)e Qo) 3A8 B U)o~ )e R0t
34B% _( abb . 2
+__8__H§ja )(wl,a)z,a)z)ej(zwz+wl)t + 3A8B H:g']abb)(“wl,wz,a)z)ej(zmz—a)l)t
+ complex conjugates (6.9¢c)

The generic expression for the nth order response component can be developed as

Hr(lj:a(p+q)b(s+u))P,an,u (a)) ejwp,q,.v,ut (6.10)

; 1
x}(1J) () = —271-2‘4[)+q RSt Coale

Hr(lj:a(p+q)b(s+u) ) P:q,5,1

where, (@) denotes the nth order kernel transforms with £, (¢)

considered (p+q) times and f,, () considered (s+u) times in the convolution integral, i.e.,

(J: aaa..., bbb.
H(J a(p+q)b(s+u))P q,s, “( ) H D+ times s+u txmes)
(a)]: i) ml: aa)Za oy 0)2, ’)

ptimes qtimes stimes utimes

and

Dpasu = (p—q)o; + (s —u)o,

Total response x“’(¢), atjth coordinate of measurement, then becomes

0 .. .
()= Z;:ZA"*"B”“ C g Hy oo PO () g paast 6.11)

n=l
The response will consist of fundamental harmonics at @;,®, along with higher order

harmonics of the general form (m @, +myw, ). Collecting the terms with p—¢ =1 and

s—u =0 from the series (6.11) one obtains the response amplitude X o) (@) as
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X(J) @ AH(JG) ® _|_ (J:aaa) AB
(@)= () 4 H (@1, 0,~ap) + == 5 H(jabb)(a)lawz,—wz)

54° (- }
+ H(_/.aaaaa) Y 154 B :
8 5 (a)laa)laa)la w, 0)1) + ng aaabb) (a)l,wl :_wlswz 9_a)2)
54B* (J:abbbb)
+ 6 Hg (@1,0,,),~0,,~0,) + higher order terms

(6.122)
Similarly, collecting the terms with p-g=0and s~y =1, one obtains the response

amplitude X ¥ (w,) as

XD (@) = BHU (@) + 35~ H‘””’“(wz,wz,—m2>+ B 1) (0 o, 0)
2 2 b

5B°  (jbbbbb) 1542B% .
= Hs (02,07, 09,~) ,~wy) + TH R ,@02,~@))

5 A4B (J:aaaab) .
+ ETE Hs (@1, 01,~@y,—w,»,) + higher order terms

(6.12b)
Collecting terms with p—g =m; and s—u=m, from the series (6.11), one obtains the

response amplitude for a general higher order combination tone as

X(‘]) (mla)l + mza)z) Z Z Aml+2me2+25 C

p+s
=i-1

n+21—3 m+p,p,my+s,s

(Jiq b )m +D, DMy 5,8
* (m+2p)(my+25)) M p.my
H n+2i-2 ( )

where 7= |m|+|my| (6.13)

6.3 Kernel Synthesis for a Two-Degree-Of-Freedom System.

As in single-degree-of-freedom systems with polynomial nonlinearity, higher order
kernels can be represented as synthesis of lower order ones, for systems with more than
one degree of freedom. This is illustrated here for a two degree of freedom system with

general form of polynomial nonlinearity up to the cubic term. The governing equation is

written below
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M)+ Cor(0) +C HO) + e (1) + oy, y(0) + K252 (1) 4 K x(1) ()

kDY O+ BTOF O+ KR 030+ B30 0+ 5 (1) = 1,0
(6.14a)

my, Y(1) + ¢ X(1) + ¢, y(t) + Ky x(t) + k() + ké’;x)xz(t) + kéf’)x(t)y(t)

+E) 2 O+ KO O+ KD 0y + K020 + KPP 1) = £, ()

(6.14b)
The parameters involved in the above equations are:

Linear Parameters:

[M]=["(’;‘ ,:] [C]{c’“ c"y} and [K]{,f’“ ,’j’”} (6.15)

e Cyx Gy w Ty

Nonlinear parameters of second order:

The set of second order nonlinear parameters can be arranged in a vector form as

(K,)= {{{? %} with

2y

r T
(K} =2, 2 2] and o, =, 6, ] .16
The first number in the subscript indicates the order of the nonlinear term and the second

number indicates the response coordinate to which it corresponds. The superscript

notations indicate the product combination of the response coordinates associated with

the parameter.

Nonlinear parameters of third order:
The set of third order nonlinear parameters can similarly be arranged in a vector form as

T T
(Koo} = e, 60, ) Ko | and{is, )= {5, 1520, 1), k2 617)

with similar notations as in the case of second order nonlinear parameters, above.
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6.3.1 First Order Kernel Transforms
For extraction of first order kernels, harmonic excitation of the form £, (r) = Acos ot

and f, () = Bcosw,t is considered. The Volterra series response for this multi-point

excitation, from equation (6.9), is
_ A (x:x) ot B : j A2 . 2
x() =2 Hi™(y)e/™ ! + S N (@) s +—2—H§"""‘) (0,—y) +37H 2 (@,,-0,)

A% ;
+TH§X-H)(wI’w1)e12W 11 H(IW)((O ® )eﬂwzt "‘IBH(JHCJ')(CO1 a)z)ej(w‘+w2)
2 b

L AB 3 e -
H(x ) (a,l —Q )ej(a)l ~02) + Ag H3(x.m)(a)lawlswl )ej36013

3A% . - .
+_8__H§x.xxx)(a)l’a)l ,—a)l)ejwlt +B?H3(X'M)(a)2,a)2,a)2)eﬂw2f

38 (. . 2B, .
+—é—H§x'M) (04,09 ,—15)e? ' + —-—3A4 2 H) (g, —0), @, )e’ P

34°B
242 5 H(x x")’)(w1 w1,0 )ej(20)1+a’2)f 3A88H(xxx}’ (0,0, _wz)ej(zwx —w )t
+ 3A4.B CU2 ,_a)z)eja)lt 3AgB H(_x X}'y) (wl,wz ) )61(2(02 +a)1 )t

2 .

+ 3AgB @y,0,)e’*?27" 1 complex conjugate terms
+ higher order terms (6.182)

A?
y(f) = H(J’ :x) (o, )ejwlf + IZ;H(,V y)(w )eja’zf > H(J’ 1xx) (a)l,—wl)+-—H(y J’y)(wz,_0)2)

2 . 2 ) . AB
+A—H§y:xx)(a)1,a)l)e12w‘t +BTH§)’-W)(@2,&,2)€J2G’2’ > H(J’ J-:V)(a)l @ )e.](ml +@3)

3 .
AZBH(Y xy)(wl’ —w )e.l(wl"w?) 5 H:.Ey:m)(a)l,a)l,a)l)eﬂwlt
3 ) 3 . ;
" %—H §y:m) (@1, 01,~0)e’ " +£8“H 3(y'yyy) (@,0,,)e7>*%
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3B ot | 3
T3 HY) (@0,05,-0,)e % + 4 BH(y ) (@1,-0,0,)e

34%B

22 B ) (4 0 g Corten 3A83 HY™) (g, Qo -o, )t

3 @) ,~w,)e’

348% (s - ?
+= Héy'xyy)(wba)z,—wz)em't+¥§H§y:W)(@1=0>2=0)2)€j(20)2+wl)t

34B* . o, -
+ ——8—H V) oy, @, L@, )el P20t | complex conjugate terms

+ higher order terms (6.18b)

Substituting the response expressions (6.18a,b) in the governing equations of motion

(6.14a,b) and equating the coefficients of gej @' | one obtains
{[_mf’” x @l +kxx] Jorey +5, ] H (@) _{1} (6.19)
2 ; = .
[]a)lc +k,, ] [—a)l my, + jacy, +kyy] Hl(y‘x)(a),) 0
Similarly, equating coefficients of g-ej “2* one obtains

[— wim, + JO2€C, + kxx] [fa’zcxy 3 kxy] fo:y)(a’Z) = {O} (6.20)
Nl ™l |

. 2 .
[jcozcyx +kyy — @My, + jWyCy, +ky,

Combining the equations (6.19 and 6.20) one obtains

H{™ (@) H{™ (@) {1 0]
L#P @ HEPP @) o 1

[——a)zmx+ja)cxx+kxx] [jwcxy +kxy]

[jco Cyx +kyx] [—-wz'my +jwcy, +k,
(6.21)

The above can be condensed further to

. H(Xx)(w) H(xy (a)) 1 0
[—mz[M]+Jw[C]+[K][H:(yx @ M@0 1 €2

where [M ], [C], [K ] are mass, damping and linear stiffness matrices as defined in

equations 6.15.
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The first order kernel transforms can now be readily expressed in terms of the linear
parameters of the system as

H(XZX)(CO) H(X1y)(a)) ' 1
HOP @) O ) =ta?lale jolc+ ]} (6.23)

6.3.2 Synthesis of Second Order Kernel Transforms
It can be seen from the response series (equation 6.18), that there are three types of

second order kernel transforms, Héj:"x)(ml,mz), Héj:”)(col, ®,) and Héj:yy)(a)l,coz),

j=x,y. While HY™ (@,0,) and HY™ (0, ,) are the direct kernel transforms,

H éj ) (@y,w,) is the cross-kernel transform. Expressions for these second order kernel

transforms can be obtained in terms of first order kemnel transforms by equating the
. AB : . . .
coefficients of —-é—ef @+@2)!" in the governing equations of motion (6.14), after

substitution of the response expressions (equation 6.18), in the following form as

(x:xy)
[—(a)1+a>2)2[M]+ j(a),+a)2)[C]+[K]] H? )(w"a’Z) ={p -4 } (6.24)
HY(or,@,)] 9w

where

Py =~k HD (@) HI ()~ kP HP™ (@) HP? (@)

- E%z)_ {Hl( =) (@) HOP (@) + B () H™ (wl)} (62
and
Gy =—kSOHE) (0)HE (03) - kS HP™ () HO ()
- k_g’yi {H(x:x) (@ )H(yiy) (@) + assedl (@ )H(y'.x) (@ )} (6.230)
5 ¢ 14y 2)+ 2) 1

Using equation (6.23), second order kernel transform expressions (equation 6.24) can be

re-written, as
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HE M @,0)] 2 ?
= (@) +w,) [M]+j(m1+wz)[c]+[K]]Ll{ n}

HE™ (@,0,) Zs

) HE (@ +o,) HE (0, + @) Py
= (6.26)

| HE P @) +0,) HP (0 +@,)

Similarly with the excitation, f, (¢) = ACosayt + BCosw,t and £, =0, and equating

AB
the coefficients of —— 5 e/ (@rrm)t 3 equation (6.14), one obtains

Héx:xx) (a)1 ,a)z) Hl(x:.\') (501 + a)z) Hl(x:y) (0)1 X wz) {pn}
o =l . (6.27)
HY™ (@1,0,)] | HY (0, +0y) HY (o, +a,) |9
where,
= kS H (@) H ) (@,) - kP H GUCH: 9 (@,) (6.28)
. : Zoa
~ kg HE (@) HP™ (@,)
and
0 = kS HE (@) HE (0,) - K2 HP (0)H) (0,)
(6.28b)

~ kY HE (o) HP™ (@)

Proceeding similarly with £, (#)=0, f, y(t) = ACoswyt + BCosw,t and then equating the

B e_](a)l +0 )t

. A .
coefficients of —— , one obtains

H§X:W)(a)l,a)2) Hl(x:X)(wl +0)2) Hl(x:y)(a)l +a)2) pJCV
_ (6.29)
HY P (01,,)| | HY™ (0, +a,) HY? (@) +0,) |9
where,
Py = _kéix)Hl(x:y) (o )Hl(x:y) (@,) —ké?)Hl(y:y) (o )Hl(y:y) (@) (6.302)

~ K HE () HP? (0,)

101




g, = _kéj;x)Hl(x:y) (o, )Hl(x?y) (0,) - k%’}’)Hl(yiy) (@, )Hl(yiy) (@)
: . 6.30b
~ kP HE (o) HEY (00y) 030

Using equations (6.26), (6.27) and (6.29), all the second order kernel transforms can be
expressed in a generic form as

{Hé"fﬂmz (0,0, )} _ [Hl(x:x)(col +@7) H (0 +0,) Hpm }

. . . M- =x,y
HY™M) (0),0,) HP™ (o) +a,) HPD (@ + wy) || dnym, o
(6.31)
with
o, = —ké’;”)Hl(x:”‘)(wl)fom)(a)z)~ kgx’y)Hl(yiﬂx)(wl)Hl(yi’?z)(wz)
kéxy) o) ol ‘ : (6.32a)
_“_;_{Hl ) ((ol)Hl,V-lz (a)z)+H1(x"72)(w,)H1(y"7‘)(a)2)}
and
Dy = _ng;x)Hl(XIﬂl)(wl)Hl(sz)(wz) __ké)}’}}’)Hl(yiﬂl)(a)l)Hl(y?]z)(a)z) _
kéxy) (6.32b)
_ ; {Hl(xﬂl)(wl)Hl(yJ?z)(a)z)+H](X-Uz)(wl)Hl(Wh)(wz)}

Equation (6.31) can be re-written to express second order kernel transforms as function of
the nonlinear parameter vector, {{K 2l {K 2y }}T ,as

{Héx‘mfh) (@), 0, )} B {Hl("”‘) (@) +@,) Hl(x:y) (01 +@,) }[{G} {O}H{sz§

Héyim’lz)(wl’a,z) Hl(y'x) (w1 +a,) Hl(y:y)(wl +w,)

where

(G={mm) g G | (6.34)
with
G = —H{™ (@) H™ (@)

G = —HP™ (@) HP™ (@)
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Gémnz) = —O.S{Hl(x:”‘)(a)l )Hl(ym)(wz)+H;(X:ﬂz)(a)x)Hl(ym(wz)

and {0} is a null row vector of dimension 1x3

Equations (6.33) relate the general second order kemel transforms H$™) (s, 0,) and

Hé«":’h”ﬁl)(a)l,a)z) to the second order nonlinear parameter vector {K,} through a

coefficient matrix whose elements are functions of the first order kernel transforms alone.

6.3.3 Synthesis of Third Order Kernel Transforms

It can be seen from response series (6.18a,b) that there are four types of third order kernel

transforms, H§j:m)(a)1,a)2,a)3), H§j’”y)(w1,a)2,m3), HY™) (0,0,,03) and

H §J =) (@1,0,,m3) . While the first two are direct kernel transforms, the remaining two

are cross-kernel transforms. The procedure to synthesise these kernel transforms from
first order kernel transforms, over the complete three-dimensional frequency space, is
given below. Kernel transforms are individually synthesised through application of the

specific set of forcing functions as listed below -

Kernel Forcing Functions

Héjm)(wl,mz,ag) f®)= Acoswlt +Bcooswyt +Ceoswyt,  f,(t)=0
H3(j:”y)(a)1,a)2,a)3) (=0, fy(t)=Acosa)1t+Bcosco2t+Ccosa)3t
HB(j”‘xy) (@1,@4,03) f+(t) = Acoswt + Beosayt, £, () = Ccoswst
ngww)(wl,a,z,ah) S (£)=Acosant, fy(t)=Bcosa)2t‘+Ccosa)3t
j=x,y (6.35)

For synthesis of third order kernel transform H §j %) (@y,w9,03) , excitation as in the

34BC ; . .
first case is applied and coefficients of —4——ef (@+02+@3)t are equated in the governing

equation (6.14), after substitution of the corresponding response representation, to obtain

the expressions for third order kernel transforms as
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Héx:m)(a)l,a)z,a)_,,) (x:x) .
_[:Hl (0 + 0, + w3) Hl(x‘y)(a;1+a>2+co3)HPm

(y:x) :
1 (a)1+0)2 +0)3) Hl(y'y)(a)l +CO2 +603)

} (6.36)

H§y:m) (0)1,602,&)3) q
XXX

where

Pxxx =

2k {Hl‘”’ (@)HS™ (@,03) + HE™ (0y)HE (0, 0)
3 [ HPD @) HE (0y,0,)

24 {H{y‘“) (@)HT™ (@3,03) + HO (0,) HY™ (0, 3
3 +HPP @)HY (0,,04)

(x:x) (y:xx) : :
o Hy™ (@) HF™ (0,03) + H (02) HY™ (0, 04)
X

3 1T @OHT @5,00)+ YD (@) B (05, 0)

Hl(yx) (@, )Héx:xx) (01, 3) + Hl(y:x) (o )Héxux) (@3, @5)

( ) e X o . . .
— kT HE (0) H ) (0,) HE (05) kPP HO) () HD (@) HP™ (w3)
_ oo | HUP @DH @) HE™) @) + B 00 HP™ (0) HE (@)
3x HO) () HO™ () g &)
1 141 (w5) 1 (w3)
e {H{"”‘) @D HD (@) H (@3)+ HP (0) HOP (0,) HE (@3)
X . . e
HP (@) H™ (0,)HO™ (@5)
(6.37a)
and
q _ Hl(xlx)(wl )Héxxx)(wz,w3)+Hl(xx)(a)z)ngxx)(ml’wg')
T R HM@)ES 0,,05)
2% [HEP (0)HY™ (@,03)+ HY ™ (@) HY ™ (0,03 )}
3 |+ HP (w)HY ™ (0y,03)

Lo [HEO@HD ™ @3,00)+ B (@) HY ™ (@1,03)
=L HEP @) HY ™ @03,03)+ HY™ @) H™ (@03,05)
HP™ (0,) HS™ (0y,03) + B (@) HF (@0y,05)

— K0 HE (@0 HE (@) HE (@3) = P HE S @) HP™ (@) HP ™ (@)
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(x:x) : : .
e {Hl C@HTV@IHP (@5) + HE (0) HY (0,) BE (1)
P @) B @) HE) 0y

(x:x) x : .
_kgfy){Hl e )(wZ)Hl(y‘X)(%)"'Hl(y'x)(wl)Hl(y:x)(wz)Hl(x:x)(ws)
HP™ (@) HE (@0,) HY™) (@)

(6.37b)
Following similar procedure, the remaining three third order kernel transforms are also
synthesised.

Based on the above, the generic expression for the third order kernel transforms is

developed as

2

H3(X577l772773)(a)],a)2,w3) [

Hl(x:x)(d)l + @y +C03) H](x:y)(a)l +w, +CO3) p771772773
Hl(y:x)(a)1+a)2+a)3) Hl(y:y)(wl+wz+a’3)

: )
H?Ey mimmns (a)l , 0y ,0)3)

qm’lz’]z
m=xy;i=123 (6.38)
where,
2k3y” P
Prmans 2——’—3&— Z , & (0)Hy ™ ; (wj’a’k)
i,j,k=1,2,3
i# j#k
2k§yy) (ym;) (vmme)
- 3x > HYW (@)H™ (@;,0;)
ijk=1,2,3
i#j#k
kgcy) (mm;) (n7 711 )
T3 2. 2H™(e)H, (w;,0r)

m,n=x,yi,j,k=1,2,3
m#n  i#j#k

- k?fj“-"x)Hl(x'h ) (w] )Hl(xlﬂz) (COZ )Hl(x:ﬂ3)(w3 )
— k:giO’Y)Hl(yiUl ) (a)l )Hl(yi'h) ((02 )Hl(y3773)(w3)
- k3(;°‘}’) Z Hl(xWi) (o, )H](x:”j) (wj )Hl(y:”") (@)

i,jk=1,2,3
i#j#k

(6.392)

_ ké?’}’) Z Hl(xﬂi) (a)i)Hl(ywj)(a)j)Hl(yiﬂk)(a)k)

i,7,k=1,2,3
i j#k
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2k

=— (x77;) (x7m)

Drmons = 3 . ’kzlzill (@;)Hy ™ ‘ (a’j:wk)
l’ k] = thad
i¢jj¢k

_ Y (yim;) ynmy)
3 ij/§2§{l @)H, " (@),04)
i;e}#k’ '

o ; Z zHl(m:m)(wi)HémnjUk)(wj’wk)

m,n=x,y1,j,k=1,2,3
m#n i#j#k

- ké’;’“)H](xi'h) (@, )H1(X3’72)(a)2 )Hl(xiﬂs)(a)3)
_ kéi}w)Hl(yiﬂl) (wl)Hl(yifh)(wz)Hl(yz%)(wS)
_ k§;XY) Z Hl(-x:ﬂi) (a)i)Hl(x:”j)(wj )Hl(}"ﬂk)(wk )
i) k=123
i#j#k
7 ;) ;
—kP S HEM @) HY (0 )HO (0))

i,j,k=1,2,3
i j#k

(6.39b)

Expressions explicitly relating third order kemel transforms to third order nonlinear

parameters can be developed by denoting

{T}z{Tl(”‘”’-'“) T2(771712773) T3(’71772773)

with

711(771772773) = __2_' ZHI(X:"i)(a)I- )ng:”jnk)(d)j,mk)

3 i,j,k=1
i j#k

T2(77V72773) I E Hl(yzni)(wi)Hgy:ﬂjUk)( i i J)k)
31' k=1
’j,

- 1 M)
T3(7h’72?73) - ____;_ Z ZHl(mm)(mi)Hénﬂﬂk (Cl)j:mk)

mn=x,y i,j,k=l
m#n i#J

and

P )
{S}:{S}”"’Z’“) Sémn_na) S§771772773) S§771772773

with
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S{M1) =~ () HE) () 1) (4,
S§’71772773) — _Hl(yifh ) (a)l)Hl(yVlz)(wz)Hl(yiﬂ3)(a)3)

Sé'h'?zﬂs ) = — Z Hl(x:m )(601 )fo:nz ) (502 )H1(y1773 ) (a’3)

i,j, k=123
i#jk

S‘(tmﬂzﬂs) - ZHl(Xifh ) (@, )Hl(yiﬂz)(mz)Hl(y:n3)(w3)
i, j,k=1,23
i#j#k
to modify equation (6.38) as
(eempm jie) . )
Hj (@),0,,03) _[Hl(x‘x)(a)l +0y +w3) Hl(x'y)(co1 + @y +m3)}[{T} 0 ]{sz}

H3(y:r7,-r7jnk) Hl(y”‘)(a)1+a)2+a)3) H](y’y)(a)1+a)2+co3) 0 {7} Koy

(@1, 0,03)
={H‘(x:x>(“’l+wz+a)3) H () +0y +03) [{S} 0 [ Kss
Hl(y'x)(a’ﬁwz‘*'ws) Hl(y:y)(a)1+a)2+w3) 0 {s} K3,

(6.42)

6.4 Parameter Estimation by Recursive Iteration.

Parameter estimation procedure employs the relationships given by equations (6.33) and
(6.42), for determination of the second and third order nonlinear parameters respectively.
First and higher order kernel transforms are obtained from measurements of response
harmonics. The nonlinear parameters are estimated by regression of these transforms
through relationships (6.33) and (6.42). The kernel transforms are determined in an
iterative manner, to include maximum possible converging terms from the Volterra

series, to recursively refine the nonlinear estimates.

The Volterra series expression for general response harmonic amplitude given in

equation (6.13), can be rewritten for x and y-coordinates as

[e 0]
X (mw; + mywr) = Z * o (Mg + my®,) (6.43)

i=1

and
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oo}
Y(mo, + myw,y) = Z ycr,- (mo, + My @y ) (6.44)

i=]

with
x my+2 2 .
o (mw; + myw-) = 1t2p pmy +2s (x:x(5 ¥ Ymy+p, p,mo +5,s
(e + matn) = 2”*2’ -3 ;A B Coritp,pmy s, sHygiy ™ G LB ()
p+s
=i-1
6.45
and (6.45)
1
Y. - my+2p pmy+2s (yix m o+
Ty + @) = s SN L B ) R
p+s
=i-1
where 7 = |m;|+|m,| (6.46)

6.4.1 Preliminary Estimates of Linear parameters

Response harmonic amplitudes X (@;), X (@,), Y () and ¥ (@w,) can be filtered, for a
typical two input single-tone excitation f,(f)= Acoseyt and J3(#) = Beoswyt , from
measurements of response x(f), y(f). Truncating the infinite series expressions in

(6.43,6.44) up to k-terms, one obtains

H (o >~—[X(wl> }:2 a(wo} (6.47a)
HE (@, )~—{X(w2) Y U(wz)jl (6.47b)
=
Hf””(co,)z%[Y(wo—éyai(wl)} a9
HO (@, )~—{Y(a)2) Z a(wz)} (6.47d)

A preliminary estimation of the first order kernel transforms H{™ (), H{™ (,),
HY(w;)and H ](y ) (w,) is made by ignoring the contribution from the higher order
series terms. Similarly applying excitation f,(f)=Acosw,t and f,(f)=Bcosayt,

kernel transforms H™ (w,), H (@), HY (,) and HY?) (@) can be obtained.
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Using these values of first order kernel transforms, for a set of excitation frequencies w;
17

preliminary estimates of the linear parameter matrices [M] [Cland [K] are obtained

through regression of equation (6.23).

6.4.2 Preliminary Estimates of Second Order Nonlinear Parameters
Equation (6.33) provides the synthesis relationship of second order kernel transforms in

terms of the nonlinear parameter vector {Kz}- Also, the relationship is in generic form

and is valid for any combination of 7, =x,y; M, =x,y. Noting that the vector {Kz}
consists of six unknown parameters, the relationship can be employed for estimation of
these parameters if values of six second order kernel transforms are available. This can be
obtained through measurement of second order response harmonic amplitudes
XQay), X(2a,), X () + w,), Y(Q2w,), Y(2w,),and Y(@; +@,). Truncating the
infinite series expressions in (6.43, 6.44) up to k terms, the corresponding second order

kernel transforms can be written in the form

. 2 :
H™) (w),0,) ~ ?[X Qay) -3 %o, (M)J (6.482)
i=2
. 2 :
HS (@,,0,) ~ 7| X(202)- Y. *0,(2m,) (6.48b)
i=2
. 2 a
Héy'xx)(wl,a)l)zzf YQw))-Y Y o;Q2aw;) (6.48c)
i=2
. 2 :
Héy‘yy)(a)z,a)z)wgi- Y(2wy) -, % 0:2m;) (6.43d)
=2
1 k
Héx:xy)(a?pwz)““‘" X(w1+wz)~zx0i(a’1+0)2) (6.48¢)
AB i=2
i k
Héy:xy)(wlawz)“zé[y(wl+602)—Zy0'f(wl+0)2) (6-480)
i=2

In the above, second order response harmonic amplitudes X (2w)

XQ2wy), X(w; +@,), Y2w), Y(QR®,), and Y(w, +»,) are filtered from the
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measured responses for the excitation S+ (@) = Acos ot and £, (f) = Bcos ot
y\= 2f.

Neglecting the contributions from the higher order terms in the equations (6.48 a-e)
above, preliminary estimates of the second order kernel transforms are obtained. These

kernel transforms can be related to the set of six nonlinear parameters, using equation
(6.33), as

rHéx.ﬂ)(wwa)\ ~ (00
) | i xx
Héylx) (601 s 0)1 ) [ (xx) ] : (xx) k2x
____________ P ; [Q ] k)
_________ ;____"_h kgy)
H( ¥y) ) :
J (@2,@3) _ [pOw) : rQ(yy) J P F (649
HY? (@, 0,) | )
— : - J— Ai - gl e 1} ké;x)
] 1 [He] ()
H(”y)(fol @,) P : E A : kiy
‘ i : | kzj;y)
LHr(J’-xJ’) (601:502)
L
where

[P(Tlmz)]= liHl(x:x) (may +naw,) Hl(ﬂy)(ma)] +nw,) J[G](le) Gglxﬂz) G§Th’72)}

Hl(y:x)(mwl +nwy) HYY) (moy, +nay) | 0 0 0
(6.502)
and
[ptnan || 1 (man + ng) B moy +nwy) { 0 0 0 }
HO™ (maoy +nwy) HO? (may +na,) | G G G

(6.50b)
with notations GM™), G{MT), G{M™) a5 explained in equation (6.34). The
combination tone ma, +nw, represents the six second order harmonics selected for

response amplitude measurement.

Regression of equation (6.49) with the set of measured second order kernel transforms,
gives the preliminary estimates of the six nonlinear parameters in the vector {K,}. The

measurements of second order kernel transforms can also be obtained for a number of
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frequency sets (@y,m,),, and the resultant over-determined system of equations can be

solved by taking generalized inverse of the coefficient matrix fo
(6.49).

rmed from equation

6.4.3 Preliminary Estimates of Third Order Nonlinear Parameters
Equation (6.42) can be employed for estimation of the third order nonlinear parameter

vector, {K } containing eight unknown parameters, with measurements of eight
response  harmonic  amplitudes X Goy), X(B3w,), Y(3a,), Y(w,), XQw, +w,),

X(Qo; +ay), Y201 +w,) and Y(20, +@,). For measurement of the corresponding

third order kernel transforms, the following k term truncations of series expressions in
(6.43, 6.44) are employed.

- 4 :
H) @, 0,,0,) ~ Vi [X Gwy) = o, (3, )J (6.51a)
i=2
. 4 2
H3(x‘yyy) (@,09,@,) ~ “Ej [XG% ) —Zz "0, (3w, )J (6.51b)
. 4 <
Hgfxm)(wl,a)l,wz)“ 2 X<2w1+wz)—2x0f<2a’1+wz) 6:51c)
34°B i=2
. 4 &5
H3(mw) (@1,09,05) = B2 XQw,y +ay) “é 0; (20, + @) (6.51d)
. 4 d
HP™ (o, 0,,0,) ~ i YGw;)-Y 7 0;(3e;) (6.51e)
i=2
. 4 £
H:gy'm)(wz,wz,wz) ~ E[YGC‘”)—I,_ZZ ya-i(3a)2)} (6.519)
4 k
HP™ (@01,01,07) ~ 5| Y20, +0,)~ Y. Y 0,20, +0y) (6.51g)
34°B i=2
4 k
HP™) (@,0,,0,) ~—2§5[Y(2w2 +op)- ). Y 0,2, +ay) (6.51h)
3 i=2
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Third order response

X 2oy +@7), X (203 + @), Y20, +0,) and YQo,

harmonic  amplitudes Gan), X(3w,), Y(Bay), Y(3w,),

+,) are filtered from the

measured responses. Neglecting contributions from the higher order terms in the

equations (6.51 a-h) above, preliminary estimates of the third order kernel transforms are

obtained. These kernel transforms can be related to the set of eight nonlinear parameters

using equation (6.42), as

(

H3(x'_mr) (wlvwl’wl)
H§ym)(wl,w1,ml)
[p=]
H (w4,0,,0,) | |, :
) pOW)
Hy 77 (@y,004,00)| | * ‘

_ pean) |
Héxuy) (mlawlsm:Z) ) ’
HP™ (@, 01,0,) -

ploy)
1{3("“3”’)(@l s Wo,0y)
LH3(y:xyy) (1,0,,05) |
where
[P(m’h’ls)]: H{F) (may + nwy)

| HY (may, + nw,)

HEP (ma, +nw,)
_H‘(y:x) (mw, +nw,)

[Q(m'?z’?s ) ]___

and
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| —( v [ ! T k(xxx)

:[ ( )' ( ).[ 3x

| X xxx) |7 ()

10|l v _;[Vm] ko)

e <l e A 12

| il

;[Q(y.w) kY [Um) E[Voow] k)

s e AN .

! :

| 13

o ||| | e :[V(xm] k)

| =5

f |

S W T

o 6 ( )-j oo ]| 66

JQWJ 2y nyyJ:[nyy] iy)

| U i ? ] k3;yy
(6.52)

H,(":y)(ma)l+nw2)—_T,(’7"72”3) T2(771772’73) 7«3(771'72'73)

HO? (may+nwy) | 0 0 0
(6.532)

H](X:y) (ma)l + na)2 )_ i 0 0 0

s | L
(6.53b)




[U (mflzﬂz)]= Hl(xiX)(mwl"'”wz) Hl(x:y)(mwl‘*'an) Sl(mnzna) Sémqu) ngnm) S‘EWMS)
HP (moy +10y)  HOP (mo, +nay)|| o 0 0 0

(6.53¢)
[V(nmzns)]= HE (moy + noy) Hl(’“y)(mao1 +nw,) 0 0 0 0
Hl(y—") (ma; +nw,) H](_Viy) (ma, +nw,) Sl('hﬂz’h) Sé’h'lz’ls) S§ﬂ1”2773) ngﬂzlh)

(6.53d)
Notations 7;""27)and S{7275) are as explained in equations (6.40) and (6.41). The

combination tone mw; +nw, represents the eight third order harmonics selected for

response amplitude measurement.

Regression of equation (6.52) with the set of measured third order kernel transforms,
gives the preliminary estimates of the eight nonlinear parameters in the vector {K;}. The
measurements of third order kernel transforms can be obtained for a number of frequency

sets (wy,@,);, and the resultant over-determined system of equations can be solved as

discussed before.

6.4.4 Iterative Refinement

The preliminary estimates of the nonlinear parameters {Kz} and {K3} are now employed
to compute the previously ignored higher order terms, *o,(m®, +mw,),
Yo ,(mw, + myw,), in the equations (6.47), (6.48) and (6.51), to get refined estimates of
first, second and third order kernel transforms, respectively. The fresh estimates of the

kernel transforms are used to regress the values of the second and third order nonlinear
parameters from equations, (6.49) and (6.52), respectively. The iterative process is
continued to obtain converged values of these parameters. The number k of the higher
order terms, to be included in the refinement would be dependent on the convergence
limit for the applied excitation amplitudes and frequencies. The convergence limit can be

applied through ratio test, while computing the successive higher order terms.
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6.5 Convergence Study and Error Analysis

A simplified model with only cubic nonlinearity is studied for convergence of the

Volterra series. The equations of motion (6.14), then reduce to
M E() + Co k(1) + e X(D) + ey YO+ K03 (0 + kP93 () = £,() (6.542)
My () + €, IO + ke X(O) + ko () + KD O+ KPP (1) = £, () (6.54b)

Such a system can typically represent a rigid rotor supported in flexible bearings (Khan

and Vyas, 1999), shown in Figure 6.1. &, k,, are the direct linear stiffness coefficients

of the bearing in the vertical and horizontal directions, respectively. Terms kxy,kyx
represent the cross-coupling effects in linear stiffness. kgxx),k%w ) are the direct

nonlinear stiffness coefficients, while k(m) k(yyy ) represent the nonlinear cross-coupling

terms. The bearing damping is modeled by direct linear terms only.

Convergence study is carried out in terms of non-dimensional parameters. Defining,

=\/kxx/mxt XU(T)ZX/XSH yU(T)zy/Xst Xxlzfmax/kxx
F@) = Fi(D)] fr  i=%y

.. k..
Gil":_ﬁy_———a 151:——%]—7 5 i=x>}’ and j"—'x,_)’ /J:my/mx
2[k Ky
(xxx)
}LN kg:xx : rﬁa.x N k(yyy)f max N _ (yyy)f M35 Jmax /?,N k f T3y Jmax
=3 = ] s 'YX
K O A K

the equations of motion (6.54) is converted in non-dimensional form as

En(e)+ 26, 5'(2) + (@) + AL, Tn(e) + AP (@) + Ay 0’ (@) = fx()
(6.55)

N 3 _ 7
K yﬂ"(f)+2§yyy77'(r)+/1fyy77(f)+ﬂ§xxn(f)+ﬂ%yﬂ3(f)+lyx’ﬂ (7)= £, (@)

For a single-tone non-dimensional harmonic excitation
Fo@) = el /2472, f,(@)=0 with r=w/\kg/m,

the response representation (6.11) reduces to
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Figure 6.1 Rigid rotor in bearings with cross coupling
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o0 l n .
Kn(r) = * nc (xx)p.g Jrp gt
n(7) ;(2) >."C, Hy, (rye”pa K=x,y (6.56)

ptq=n

Applying method of harmonic probing, the kernel synthesis formulation, for the system

given by equations (6.54), for first order and higher order kernel transforms are obtained
as

[ prt+ i, +ngw]

Hl(x:x)(r) i
]. r +1+J2gxx _”_ m +/IL +J2gw ]—ﬂ’fwﬂfix (6.573)
/'LL
H(}’x)(r)
6.57b
l ro+1+ j2¢,.r “ L +,1L +J2gyy1 AL ﬁ'f)x ( )
and

. -B +4%
H}Sx.xx..)p#v) - 1[ #rpq +12§yy pq]+ Bzﬂ’ 3 y (6.58a)

" q{[ pq+1+]2gxx pq“ qu*'}“L + 26,1 pql iﬁyﬂix}

H(y:xx...)p,q(r)_ Bz[ Pq +1+J2gxx P‘J]+Blﬂ’}’x ’(6 58b)
n I AN
ncq{[_ Tog T1+J260T Pq“ qu"‘"’1 + 726 T qu Axy’q'yx}

where

B, = ;Lilx Z ["1 qu H’(Zi‘:xx«)Pl:qI (r)][nchz H’(I:ZXL-)PM: (r)][”3cq3 H}(:‘-"x--.)m"b (,.)]

pitqi=n;
n|+n2+n3-—~n
+ ﬂ,ﬁ’y z [m qu H’(l;vvcx..)Pl,Q\ (r)][nz qu H’(zg:xx...)[?z,% (r)][”3 Cq3 Hr(;):;oc...)p3,q3 (r)]
pitqi=n;
n+ny+n3=n

and

pPitqi=n
n1+n2+n3=n
N n (yxx..) Pr,di ]["2 (yxx...) p2:92 ][”3 (yxx...)p3.43
+ ﬂ,yy Z [ ‘qu H n (r) C‘Iz an ’ (7‘) C43 H n3 (r)
pitq;=n;
rl|+n2+n3=n
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Following equations (6.43-6.46), the nth order response harmonic amplitude in non-

dimensional form, * Z(nr), is obtained as

o 1Y ne2i2 i
*Z(nr) = 221( 5) TUECL THRET ), k=xory (6.59)
=
A k-term approximation of the response series would be given by
k
KZ(nry=>Y "o;(nr) (6.60)
i=]
where,
1Y ni o
Ko (nr) =2 (5) ME2C, REMLEL (6.61)

The error between above approximation and the exact value of the harmonic is

Ko, (nr) = ]["Z(nr)-',f Z(nr))/*Z (nr) (6.62)

The approximated response harmonic j Z(nr) can be synthesized after determining the

K'Hn-i-l'-"l,i—l

higher order kemnel transforms 2oy

(r), using equations (6.57,6.58). The exact
response harmonics are obtained by fourth order Runge-Kutta numerical solution of
equations (6.54). Similar to the convergence exercise carried out for single-degree-of-

freedom systems in section 5.2.1, the limit of convergence of the response harmonic

X Z(nr) can be represented by a set of critical values of the non-dimensional parameters

AN AN AN Ny( -di i -li eters along with
k(/lxx,iw,/l,g,,/lyx it These four non-dimensional non-linear param g
the number of terms, k, constitute a 5-dimensional parametric space which is divided into

two regions of convergence and divergence by the hyper surface represented by

l ( xx > W P} U’ 9 yx . r Se (0) CO u )

N are taken as zero in the present computer simulation. The parametric space,

N
AN, and A%,

) .. N N
then reduces to 3-dimensional space comprising of A,;,4,, and k.
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The following values of linear parameters are considered for computer simulation of
equations (6.54)

u=10 AL=a5 =10
A, =2, =012and 05

Sxx =6y =0.01

Defining a scaling parameter =4}, /A%, the convergence is analysed numerically as a

function of Afx , B and the number of terms, £, in the response harmonic series.

For a specific value of f, the limiting value of )Livx for which a k-term series for nth

order harmonic is convergent is termed as the critical non-dimensional parameter ,f}.(c’;,),
The variation of this parameter with the excitation frequency r, for a typical value of & =
3, is shown for both x and y direction response in Figures 6.2a,b. The plots are shown for

three different values of the scaling parameter 5 =0.1, 1.0, 10.0. These plots pertain to a

case of linear coupling numerically taken as /lfy 5 /IJL,X =0.5. It can be observed that the

ﬂ.(K )

o are small at the system natural frequencies (which, for

critical values [

ﬂﬁy = lf,x =0.5, are r = 0.7 and » = 1.224.) and their 1/3 subharmonics at » =0.233 and

r = 0.408. It is maximum in the vicinity of the anti-resonance frequency at » = 1.0.

Similar characteristics are observed, for a case with weaker linear coupling
(Aﬁy = /lj‘,x =0.1), in Figures 6.3a,b. However, the coupling being weak, the effect of

scaling parameter £ is also weaker than in the previous case, of Figures 6.2a,b.

The critical values ,f/l(c’:l), discussed above are obtained through the ratio test similar to
that of single-degree-of-freedom system (section 5.2.2). A comparison of these critical
values with those obtained through iterative simulation is shown in Figures 6.4a-c for

various values of scaling parameter S. The figure shows the zone of convergence and

zone of divergence in terms of critical value of the non-dimensional parameters.
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Figure 6.2 Variation of critical non-dimensional parameter, 3 A,,;, with non-dimensional
frequency, r, for two-degree-of-freedom system. [Any = Aﬁx =0.5]
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Figure 6.3 Variation of critical non-dimensional parameter, } 4., , with non-dimensional -

frequency, r, for two-degree-of-freedom system.
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[ x-response, r =0.5, ﬂﬁy =
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6.6  Selection of Excitation Level for First Harmonic Measurement

The convergence analysis presented above provides the basis for selection of the limiting

number of series terms in the response harmonic approximation (6.60). Figures 6.5(a), (b)

show the variation of approximation error for constant excitation amplitudes, for various
i L L

number of series terms, over the frequency range, for Axy = Ay =0.5. It can be seen

from these figures that approximation errors are very high near the natural frequencies

(r=w/\ky/m, =071 and1.224) and at their sub-harmonics. This shows that the

excitation levels should be reduced near natural frequencies of the system so as to keep
the error in acceptable limits. Since, it is not possible to determine the excitation levels
for uniform error, in absence of a-priori information about the unknown parameters,
excitation level, alternatively, is selected by constant response amplitude criterion.
| Figure 6.6(a) shows a variation in the excitation force, in terms of non-dimensional

parameter, A;, controlled for constant harmonic amplitude, X (@) . Approximation errors
in the response harmonics, X(w) and Y(w) are plotted in Figures 6.6(b), (c)

respectively. Errors are relatively high near the natural frequencies but they are much less

compared to constant excitation level case (Figure 6.5).

6.7 Signal Strength and Measurability of Third Response Harmonic

Estimation of nonlinear parameters is done through the measurement of higher order
harmonic amplitudes. However, these harmonic amplitudes are generally small in
comparison to the fundamental harmonic amplitude. Non-dimensional response

amplitude of general third order harmonics X (@; +@; +y) and Y(@ +@, +@;) are

plotted in Figures 6.7(a) and 6.8(a) respectively for @ and @, varying over a wide range

with @5 kept constant at 0.1y/k, /m, (for case /I,Lg, = lﬁx =0.5). These plots have been

obtained through numerical simulation using, fourth order Runge-Kutta algorithm, with

three-tone excitation of the nonlinear system under consideration. This numerical

solution can be termed as exact response. Figures 6.9(a) and 6.10(a) show similar graphs
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Figure 6.8
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Third harmonic amplitude, ¥ (@; + @, + @;) and the error in single-term
series approximation. [@; =0.1x [k, m, ]
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Figure 6.9  Third harmonic amplitude, X (@; + @, + @5 ) and the error in single-term
series approximation. [@3 = 0.4 \/kyy/p ]
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for w3 kept constant at 0.4y/k,, /m, . From these figures it can be seen that the third

harmonic amplitudes are significant or measurable only along the frequency

combinations @ +@; + @3 =, and o +w, +@y = ®,, It may be noted here that in

. L L
this case, for Ay, =4y, =0.5, @, =071k, /m, and @n, =1.224,/k,, I'm, .

Figures 6.7(b), 6.8(b), 6.9(b) and 6.10(b) show the Volterra series single-term
approximation of the third harmonic amplitude series for respective cases. Errors between
these approximations and the exact solutions of Figures 6.7(a), 6.8(a), 6:9(a) and 6.10(a)
are plotted in Figures 6.7(c), 6.8(c), 6.9(c) and 6.10(c). The error is seen to be low along

the frequency combination @; + @, +@3 =, or Dy, -

These observations indicate that the third order response harmonics should be measured
along the frequency combination line @; +@, +w; =, orw,, . Similar to single-
degree-of-freedom systems, a measurability index is defined here as the ratio of higher

harmonic amplitudes to first harmonic amplitude. Figures 6.11(a),(b) show the variation

in measurability over the frequency range for harmonics X(3w) and Y(Qw),
respectively. Measurability is maximum at @, /3=0.237\k. /m, . Figue 6.12(a)
shows that a peak measurability of 10% can be achieved with excitation level

corresponding to livx =l§‘,§, =0.0048 . Similarly for a peak measurability of 5% an

excitation level corresponding to /?.fx = ﬂﬁ, =0.0021, is required. The corresponding

errors in the approximation of third harmonic amplitude series are plotted in Figures 6.12
(b), (c) respectively. For 10% measurability the peak error is 30%, whereas for 5%
measurability it is about 9%. These figures also show the errors as function of the number
of terms included in the Volterra series approximation. Error decreases sharply slightly

away from the one-third natural frequency value and it is therefore suggested to select a

set of excitation frequencies in this vicinity.
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6.8 Illustration

Parameter estimation is illustrated for the following values of linear and nonlinear

parameters in equation (6.54 a, b)

Linear parameters
m, =m, =1.0kg

ke =k, =1.0x107 N/m
(o =6,y =001
ky =k, =0.5x107 N/m

Nonlinear parameters
e Casel:

K = k”) =1.0x10 N/m
o Case2:

k) =1.0x10'° N/m and kP =1.0x108 Nm (B =k KT =0.1)

Responses x(¢) and y(f) are obtained from integration of equations of motion (6.54a,b)

by Runge-Kutta algorithm and response is processed in accordance with the suggested

procedure to estimate values of the linear and nonlinear parameters. For computational
ease the cross-coupled nonlinear parameters kgyy ) and k§f‘x) are taken as zero. Case 1

represents identical nonlinear stiffness coefficients in both x and y directions, whereas
Case 2 represents asymmetrical nonlinearity in x and y directions. Single-point excitation

— one at a time - at a time, first in the x-direction and then in y-direction, is employed.

Case 1:
The natural frequencies of the two-degree-freedom system under consideration are found

to be 0.7,k /m, and 1.224,/k, /m, . Frequency range, from @=01ky /m, to
w =15,k /m, , is selected for excitation to include both the natural frequencies. The

amplitude of the harmonic excitation is varied over the frequency range so as to get a

nearly constant response amplitude, throughout the frequency range (a constant



amplitude, X(@)=1.0x10"" m, is selected in the present case). The required variation

in excitation amplitude is plotted in Figure 6.13(a), while the corresponding response
levels X(w)and Y(w) are plotted in Figures 6.13 (b), (c). The preliminary estimates of

the first order kernel transforms are obtained using equation (6.47). Excitation force is
applied in the x-direction and kernel transforms H l(x”‘) (w)and H l(y ™) (@) are estimated.
Excitation force is applied next, in the y - direction, and kernel transforms
H) (@) and H??)(w) are estimated. Figures 6.14(a)-(d) show the estimated first order
kernel transforms, H 1(’“") (@), Hl(y :x)(co),Hl(’“” )(@) and Hl(y ?)(@). Due to symmetry in
the numerical values of the parameters in this case, direct kernel transforms
H l(x") (@), Hl(y ) () are identical to each other. Similarly cross-kernel transforms
HY*) (), H*?) (@) are mutually identical. Standard curve fitting procedure is applied

to these kernels, in accordance with equation (3.18a) to obtain the following preliminary

estimates of the linear parameters.
ke =k, =1.0042x107 N/m ky, =Ky, =0.4960x107 N/m

m, =m, =0.9549 kg $x =&,y =0.00883

For 5% peak measurability of the third order harmonics, the excitation level is found to
be 0.4582 N. Third order response harmonic amplitudes X (3w)and Y(3w) are obtained

from the responses with excitation level set at above value for a set of four excitation

frequencies, @/4/k,, /m, =0.21,0.22,0.25and 0.26. These excitation frequencies are

selected close to the one-third natural frequency value, @, /3=0237 k.. /m, . The

response spectra of overall responses x(?) and y(f) for these excitation frequencies are

shown in Figures 6.15 and 6.16 respectively. Employing equation (6.51) and using the

third order harmonic amplitudes, preliminary estimates of the nonlinear parameters is
obtained as

k) = k) = 0.8450x10" N/m

19N
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The recursive iteration algorithm, for refinement of the estimates, includes appropriate
number of higher order series terms in the equations (6.47,6.51), to give a convergent
Volterra series solution. Iterations are continued till the estimated nonlinear parameters

converge within a variation range of 0.1%. Figure 6.17(a) shows the convergence of

iterative estimates of the nonlinear parameter, k{*™) with successive iterations (it is same

for the other nonlinear parameter, k3('}‘?°’ ) ). Corresponding error of estimation is plotted in

Figure 6.17(b). A significant improvement in estimates is obtained through iteration
giving error reduction from 15% to 0.29%. Figure 6.18 shows the final estimates of the

kernel transforms. The final estimates of nonlinear parameters are

= ) = 19
) = k) =0.9971x10" N/m

Final estimates of linear parameters are
7
ke =k, =0.9998x107 N/m kyy =k, =0.5088x10" N/m

m, =m, = 0.9994 kg | o =y =0.01005

X
A significant feature of the recursive iteration procedure is the major improvement

obtained in the damping estimates. The preliminary estimate was {, =&y, = 0.00883,
with an error of 11.7%. The final estimate is ¢, =4, =0.01005, where the error has

reduced to 0.05%

Similar exercise is carried out for 10% peak measurability, which is obtained at an
excitation amplitude of 0.693 N. Figures (6.19) and (6.20) show the response spectra in x
and y directions for the set of  excitation frequencies

@/ \Jky /m, =0.21,022,025 and 0.26. The convergence pattern for the estimates of

nonlinear parameters and the corresponding error are shown in Figure 6.21 (a), (b). Final

estimate of first order kernel transforms are shown in Figure 6.22. The estimated values

are
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k) = k) =0.9858x10'° N/m

ke =k, =1.0010x107 N/m kyy =k, =0.5089x107 N/m

my =m, =0.9996 kg e =¢,y =0.01002

A comparison of the above results with those obtained for the earlier case of 5%
measurability reveals no significant change in the linear estimates. However, the demand
for higher measurability results in higher error in estimates of nonlinear parameters
(1.42% in the case of 10% measurability; 0.29% in case of 5% measurability; Figures
6.23a, b).

Case 2:

In this case nonlinear stiffness along y-direction is taken 0.1 times that along x-direction.
This represents an asymmetric stiffness model. The simulation is carried out with same
set of excitation levels as in Case 1, corresponding to 10% peak measurability. The
estimated first order kernel transforms are shown in Figures 6.24. Final estimates of

linear parameters are

m, =0.9900 kg m,, =1.0254 kg
ky =0.9828x107 N/m  ky, =0.4997x10" N/m

k,, =1.0277x107 N/m &y, =0.4998x10” N/m

¢ =0.00993 £,y =0.009927

The convergence pattern of estimates of the nonlinear parameters during recursive
iteration, along with the associated error, is shown in Figures 6.25(a), (b). Final estimates
of nonlinear parameters are

18 3
k) = 0.9948x10'° N/m? K =1.0055x10" N/m

Final estimation errors are 0.52% and 0.58% respectively for the nonlinear parameters. It

is found that in this case faster convergence is achieved than in Case 1.
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6.9 Remarks

The iterative method of parameter estimation has been extended for multi-degree-of-
freedom systems and illustrated with numerical simulations. Cross-kernels have been
defined and generic expressions for their synthesis have been developed. Matrix form
formulations for estimation of linear and nonlinear parameter vectors from the higher
order kernel matrices have been developed. Numerical simulations indicate that the
procedure can yield accurate estimates of linear parameters including damping. Nonlinear
parameters are also estimated with good accuracy and the error is linked to the

measurability condition of higher order response harmonics.



CHAPTER 7

EXPERIMENTAL INVESTIGATIONS

Experimental studies have been carried out on a simple rotor-bearing test rig in the
laboratory for investigating the applicability and validation of the parameter estimation
procedures. The test rig consists of a rotor shaft supported in ball bearings. For such
bearings, cross-coupling stiffness parameters are negligible in comparison to the direct
stiffness coefficients and accordingly the rotor-bearing system can be modeled as a
single-degree-of-freedom system. Harmonic excitation is provided by a function
generator, through power amplifier at one of the bearing caps. Measurements for
excitation force and resultant vibration response are taken simultaneously at the point of
force application itself, i.e., at the bearing cap. Measured signals are taken to a spectrum
analyzer and time domain data are transferred to computer and processed in accordance

with the procedure described in Chapter 5, for linear and nonlinear parameter estimation.

7.1 Experimental Setup

The laboratory rotor-bearing set up consists of a disc centrally mounted on a shaft
supported in two ball bearings (Figure 7.1a). The shaft can be driven, if required, through .
a flexible coupling by a motor. The disc has a mass of 1.23 kg. The shaft has a length of
0.55 m and a diameter equal to 10 mm. Bearings are housed in pedestals comprising of

an upper cap and a lower case. The bearings are SKF make with following specifications-

. Ball bearing type ~ SKF 6200 Ball diameter =~ 6 mm
Inner diameter 10 mm Pitch diameter 20 mm
Outer diameter 30 mm : Ball race radius 3.09 mm

Number of balls 6 Allowable pre-load 0-2 ym

Overall rotor mass is 1.57 kg which gives per bearing rotor mass as 0.785 kg. The

electro-dynamic exciter is vertically mounted between the driving end bearing cap and a



Figure 7.1(2) Experimental set up along with instrumentation.

ing arrangement and impedance head.

Figure 7.1(b) Exciter mount
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rigid frame (Figure 7.1b). The excitation is given in vertical direction and response of

bearing housing vibration is also measured in vertical direction.

7.2 Instrumentation

Figure 7.2 shows the schematic diagram of the experimental set up with instrumentation
arrangements. Harmonic excitations at desired frequencies are generated in a Function
Generator PM 5132 (Phillips make, 0.1-2MHz) and amplified in a Power Amplifier. The
Power Amplifier is Briiel and Kjaer make, Type 2706 with a frequency range of 10 Hz
to 20 kHz. The electro-dynamic shaker is also of Briiel and Kjaer make, Type 4810 with
a frequency range of 0-18 kHz and a peak-to-peak force rating of 10 N. The excitation
force and vibration response are measured, simultaneously by an impedance head,
attached between the shaker and bearing cap. The impedance head is of Briiel and Kjaer
make, Type 8001 with accelerometer sensitivity of 3 pC/ms™and force transducer has a
sensitivity of 370 pC/N. The frequency range of the impedance head is 0-10000 Hz. The
outputs from the impedance head are charge signals and are converted to voltage signals
and conditioned through a pair of B&K charge amplifiers, Type 2635. The measured
force and vibration data are acquired in a spectrum analyzer (ONO SOKKI make, CF-
350Z) and transferred to a Pentium III PC. Preliminary measurements like adjustment of
the excitation level for a uniform response amplitude and determination of excitation
level for a given peak measurability condition are carried out through use of the spectrum

analyzer. Parameter estimation is carried through specifically written algorithms in

Fortran.

7.3 Measurements and Case studies

A schematic diagram of the rotor with nonlinear bearing stiffness modeling is shown in
Figure 7.3. Rotor is considered rigid and cross-coupling stiffness coefficients of the
bearings are neglected. For vibration along vertical direction only, the rotor-bearing
system can be idealised by a single-degree-of-freedom model as

mx () + cx(t) + g[x(t)] = Acosw t (7.1
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An initial measurement of the natural frequency of the system is obtained through a rap
test, using an impact hammer. The rap test response spectrum (Figure 7.4) shows that the
natural frequency is in the vicinity of 1010 Hz. A preliminary experimental investigation

is carried out first to find out the stiffness nonlinearity structure, g[x(f)], of the system

through ordered component separation method presented in Chapter 4.

7.3.1 Investigation of Stiffness Nonlinearity Structure

The system is harmonically excited at frequency, 1000 Hz. Frequency spectra of the
applied force and response are shown in Figures 7.5 (a) and (b), respectively. Only odd
harmonics are found to be present in the response spectrum, which indicate that the
stiffness nonlinearity is of symmetric form. To further determine whether the stiffness
nonlinearity is in polynomial form or not, response measurements were taken for three
excitation levels (4N, 3N and 2N at excitation frequency equal to 330 Hz) and response

components x, (¢), x,(t), x,(¢) are separated from the overall response x(f) by order

component separation method, explained in Section 4.1. Frequency domain
transformation of x,(t), x,(t), x,(f) gives X;(w), X, (®)and X3(») which are probed

to detect the presence of various harmonics of the excitation frequency. Figures 7.6(a),
(b), (c) show the force time histories at various excitation levels and corresponding

response time histories are shown in Figures 7.7(a), (b), (c). The frequency spectra of the
response components (Figure 7.8) do not exhibit ordered harmonic characteristics, as

discussed in Section 4.2 for characterisation of the nonlinearity as polynomial type. The

Fourier transform, X, (@) of the first response component ¥, (), in Figure 7.8(a), is seen

to contain third harmonic at 990 Hz, in addition the fundamental harmonic at 330 Hz,

corresponding to the frequency of excitation, This is in violation of the characteristics for
polynomial class of nonlinearities, for which the first response component is expected to
contain only the fundamental harmonic, refer Figure 4.1 (b). The second response

i d third
component of the rotor bearing-system, can be seen to contain both first an

harmonics (Figure 7.8 b), which also is in Vv
r-bearing system, therefore, belongs to a class

iolation of the characteristics for the

polynomial class of nonlinearities. The roto

] ineari er, the
of nonlinear systems having a non-polynomial type of nonlinearity. Howev
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absence of even order harmonics in the response spectra indicates that the nonlinearity is

symmetric.

Theoretical formulations based on Hertzian contact theory, (Harris, 1984) also indicate
that the nonlinear stiffness associated with rolling elements follows a fractional power
relationship and not a polynomial form. The procedures developed, during the present
study and discussed in Chapter 4, while being able to distingnish between polynomial and
non-polynomial class of nonlinearities, are not capable of making further distinction
within the non-polynomial class (i.e. classification into say, bi-linear or Van-der-pol or
clearance type of nonlinearity). However, a continuous non-polynomial force-
displacement relationship can be approximated by a polynomial within a given
displacement range. Since the non-linearity is found to be symmetric in this case, the

approximating polynomial will have odd power terms only. Ragulski (1974) has observed
that for a small deformation |x| < g, where g is the pre-load in the bearing, the stiffness
function is given by the form

k(x)=a-bx?,

indicating that the load deflection curve posses negative cubic nonlinearity. Therefore, a

cubic polynomial form of nonlinearity given by
glx(t) = kyx(t) + ky x> (£) (7.2)
is considered in the present experimental model as an approximation to the bearing

stiffness function and the experimentation is carried out to estimate the linear and

nonlinear stiffness parameters, k; and k3 of the rotor-bearing system.

7.3.2 Determination of Linear and Nonlinear Parameters |
Experiments are focused on estimation of the nonlinear stiffness coefficient, k3. Linear

parameters are estimated in the form of damping factor,’, and natural frequency, @,,.

Linear stiffness coefficient, k;, is obtained from the estimate of natural frequency, using

the known value of rotor mass per bearing. For estimation of first kernel transforms,

H,(w), the excitation frequency range 925-1035 Hz is selected. Keeping in view, the



single-degree-of-freedom treatment of the rotor-bearing set-up, a wider excitation
frequency range is avoided in order to stay clear of some other structural modes which
may influence measured vibration data. Figure 7.9 (a), (b) shows the time history and
frequency spectrum of the excitation force for a typical excitation frequency of 925 Hz.
Time history of the corresponding displacement response and its frequency spectrum are
shown in Figures 7.10(a), (b). The displacement response amplitude at 925 Hz is of the
order of 1.0x10™® m. The response also shows presence of background noise, which is
an order less in magnitude compared to displacement signal. Noise spectra are also

separately measured after switching off the exciter. This is shown in Figures 7.11(a), (b).

As discussed in Chapter 5, excitation level is varied over the frequency set to obtain

response amplitude at a constant level, which in this case was selected as 1.0x10* m.
The variation of excitation level is plotted in Figure 7.12(a) and corresponding response

harmonic amplitude, X (@), is shown in Figure 7.12(b). Preliminary estimate of the first
order kernel transform, H, (@), is obtained in Figure 7.12 (c), by dividing response
X(w) of Figure 7.12 (b) by the applied force of Figure 7.12 (a). Using standard curve
fitting procedure (Ewins, 1984), linear parameters o, and ¢ are estimated. The best fit
curve along with the estimated kernel transform data are shown in Figure 7.12(c). The

estimated linear parameters are
o, =1012.2 Hz, ¢=0.01156.

Estimation of nonlinear stiffness parameter k, is done through measurement of third

response harmonic amplitude X (3w). The displacement amplitude of the third response

harmonic is low and therefore measurements were made for acceleration amplitudes.

Figure 7.13(a), shows the acceleration amplitudes of the first and third order harmonics,

for an excitation frequency of 330 Hz. The ratio between the amplitudes at third

harmonic and first harmonic is compﬁted. This gives the measurability index, which

forms the basis of selecting the excitation level and frequency range for measurement of

third response harmonic amplitude X'(3@). Figure 7.13(b) shows measurability indices

for three different excitation amplitudes of 2N, 3N and 4N over a frequency range of 305

Hz-355 Hz. Corresponding peak measurability indices can be seen to be approximately of
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the order of 3%, 5% and 10%. Excitation frequencies are selected at 330 Hz, 335 Hz, 340
Hz and 345 Hz, as measurability is higher in this range. Third response harmonic
amplitude X (34)) is then measured at these selected frequencies for three different

excitation levels and the nonlinear parameter is estimated.

Case I (Excitation Amplitude 4.0 N)

The measured acceleration spectra at the four selected frequencies are shown in Figures
7.14(a-d). First a preliminary estimation of the nonlinear parameter k, is made and then
method of recursive iteration is employed. The iteration procedure is repeated till
estimated value of the nonlinear parameter converges within a limit, which in this case is

specified as 0.1%. Figure 7.15(a) shows the estimated values of nonlinear parameter k,
over the stages of successive iteration. Final estimate of k, is found to be

1.75%10" N/m®. Assuming that both the bearings are identical and act in parallel, the
nonlinear stiffness of each bearing then becomes 0.875x 10" N/m’. Figure 7.15(b) show

the final estimate of the first order kernel transform along with its preliminary estimate. It
is seen that the successive iterations have modified the FRF values significantly near and
around the natural frequency. Final estimates of linear parameters are

o, =1011.47 Hz, ¢ =0.01078.

The linear stiffness parameter of the bearing system is computed to be 1.585x 10" N/m.

Case II (Excitation Amplitude 3.0 N)

Figures 7.16(a-d) show the measured acceleration spectra at the four selected frequencies.

The converged value of k; is found to be 2.857x10° N/m® (Figure 7.17(2)). This gives

the value of nonlinear stiffness of each bearing as 1.4285x10" N/m®. Figure 7.17(b)
show the preliminary and final estimates of the first order kernel transform. Final

estimates of linear parameters are

w, =1012.47 Hz, ¢ =0.01015.

The linear stiffness parameter of the bearing was computed as 1. 535x107 N/m.

1477
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Case 1II (Excitation Amplitude 2.0 N)

Figures 7.1 8(a-d) show the measured acceleration spectra at the four selected frequencies.

Convergence of estimated value of k, through successive iteration is shown in Figure
7.19(a). Final estimate of k, is found to be 3.48x10" N/m*, which gives the value of

ponlinear stiffness of each bearing as 1.740x10" N/m®. Figure 7.19(b) shows the
preliminary and final estimates of the first order kernel transform. Final estimates of
linear parameters are

w, =1011.90 Hz, ¢ =0.01002.

The linear stiffness parameter of the bearing was found to be 1.586x 10" N/m.

For all three cases discussed above, while the values of the estimated linear parameters is

practically the same, the estimate of the nonlinear parameter k,, varies with the

excitation amplitude. This, as expected, is due 10 the fact that the system nonlinearity
does not belong to the polynomial class, and its polynomial approximation would be

amplitude dependent.

733 Detection of Sign of Nonlinear Parameter k,

The procedure for detection of the sign of nonlinear parameter k,, has been described

earlier in Section 5.4. It is done by looking for a change in the sign of real part of the

complex response harmonic amplitude, X(3w), as exci

one-third of natural frequency- Figure 7.20 shows the sign variation of real part of

X (3w), over the excitation frequency range 330-345 Hz for excitation Jevels 4N, 3N and

ON. The sign of real part of X(3w)is seen 10 change from positive values to negative

values during frequency transition through one-third natural frequency: This, follow1'ng
s that the nonlinearity is negative in sign

the arguments presented in Section 5.4, indicate

and the bearing has a softening spring.

tation frequency is varied through -
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7.4 Validation

For validation of the experimentally estimated nonlinear stiffness parameter, analytical
formulations of Harris (1984) and Ragulski et al (1974) are employed. These
formulations are based on Hertz’s theory of elastic contacts and treat the bearings in

isolation of the shaft.

Figure 7.21 shows a typical isolated ball bearing configuration, in which external forces
act along x-axis. 7, is the angle between load axis (i.e., x-axis) and the radial direction of
a typical ith ball element. For a displacement (x,y) of the moving ring along the
respective axes, total elastic force acting in radial direction at the point of contact of ith

ball is given by

F =k,(g+xcosn, + ysin 77/)3/2 (7.3)
and its projections along x and y axes respectively are

F_ =k, (g+xcosny, +ysinny,)*? cosn, (7.4)
F, =k,(g+xcosn, +ysinn,)*? sin, (7.5)

where g is the radial pre-load between the ball and the races, k, is a coefficient of
proportionality depending on the geometric and material properties of the bearing. The

value of k,, for the test bearing is estimated as 2.82x 10° N/mm'? ( Harris,1984).

;I'otal restoring force of the bearing is equal to sum of elastic forces of all the elements,

ie, F=)YF, (7.6)
i=1

where # is the number of rolling elements in the bearing.

Using the condition of zero elastic force along y-axis (since no external force acts along

this axis) and following equation (7.5), deformation y is obtained as

zn: [g +xc0S87, ]3/2 sin 77, an
y=-
Z[g +xcosn, | sin 7,

i=l




Fig. 7.21 Schematic diagram ofa loaded ball bearing
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Equations (7.4) and (7.7) are used in equation (7.6) and the bearing stiffness is
determined as a function of deformation x as

k(x)=0F/ox (7.8)

Substituting equation (7.6) in equation (7.8), taking into account equation (7.7) the

bearing stiffness is expressed as a function of deformation as

k(x)=K, Z [g +xcosn, —(A/ Bn)singy, ]”2 [cos n - {CBn -AD(n- l)}/(Bn)‘2 sin7, ]cos n,

i=]

(7.9)
where
A= Z[g + JCCOSy]l]3/2 Sil’l77,- 3 B= i[g_{_xcos’?i]wz Sinz 7,
=t i=]
€ =3 lg + woosn ] siny, cosm, D=3 [g-+veosn ' sin’ g, cosn (7.10)

1=l i=]

It can be seen that the bearing stiffness is critically dependent on the pre-load g. Table 7.1
summerises the theoretical bearing stiffness parameters for different pre-load along with
experimentally obtained stiffness parameters. The stiffness variations are graphically
shown in Figure 7.22. The figure also shows experimental results of earlier researchers,

Tiwari (1996) and Khan (1999), on the same experimental set up.

Table 7.1 Estimated and theoretical (Ragulski et al. 1974; Harris, 1984)

bearing stiffness parameters.

Theoretical Stiffness (N/m) Estimated Stiffness (N/m)
Pre-load (um) | k(x) from equation (7.8) (k, —3k,x?)
0.2 120x107 —4.01x10°x* | Case i): 1.585x10" —2.625x10" x?
0.3 147x10" —2.18x10°x? | Case ii):1.535x10’ -4.285%10" x?
0.4 1 69x10" —1.42x10°x> | Case iii):1.586x10" —5.240x10” x’
0.5 1.89x107 —1.02x10" x*
0.6 2.08x107 —0.61x10" x*
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7.5 Remarks

The stiffness parameter estimates from the experiment show reasonably good agreement
with those from available analytical formulations for isolated ball bearings. The
analytical formulation is dependent on the amount of preload and making numerical
comparisons with experimentally estimated value is difficult. While, the manufacturer, at
times may provide the preload range, the exact value of preloading of the bearing balls in
the shaft-casing assembly, especially during operations which have involved wear and
tear, would be difficult to determine. However the two sets of estimates are close. The
nonlinearity in the rotor-bearing system was found to be of non-polynomial type.
Parameter estimation has been based on its polynomial approximation for specific

excitation amplitudes.



CHAPTER 8

CONCLUSION

The present study deals with the inverse problem of parameter estimation in nonlinear

systems. Volterra theory for nonlinear analysis has been employed as a platform for

development of identification and estimation procedures.

Procedures for identification of the type of nonlinearity are developed through analysis of
structure of the system response as represented by Volterra Series. First and higher order
components of the Volterra series response are analysed in the frequency domain.
Characterstics of the harmonic contents of these components are employed in
classification of system nonlinearity between polynomial and non-polynomial forms.
Procedure to distinguish between symmetric and asymmetric forms is also presented.
Techniques to estimate the series structure in case of polynomial nonlinearities are

developed.

Issues relating to convergence of Volterra series have been investigated in detail. Series
term expressions for individual harmonics in the response are developed and their
convergence is discussed as a function of the excitation amplitude and frequency, system
parameters and the number of terms to be employed in their approximation. The data
generated can be usefully employed for design of experiments. A simple convergence

criterion based on a ratio test is additionally suggested, which can be applied for wide

frequency range and for any arbitrary number of series terms.

The estimation procedures employ measurements of various harmonics in the system
response. Volterra kemel transforms are extracted from these harmonics. The first and

higher order kernel transforms are related through unknown nonlinear parameters, for

systems possessing polynomial form of nonlinearities. These relationships are analysed

and employed along with the extracted values of the kernels to obtain estimates of

nonlinear parameters through recursive iteration. The issue of measurability of higher

harmonics for practical application has been analysed. A measurability index has been



defined and implicit errors and convergence aspects are quantitatively discussed.
Procedures are illustrated through numerical simulation. The accuracy of estimates

including that of damping has been highlighted. Robustness of the algorithms, in
presence of measurement noise, has been explored.

Procedures for parameter estimation for multi-degree-of-freedom systems are developed.
Multi-input harmonic probing has been employed. Generic expressions for Volterra
series representation of the response have been worked out. Convergence and error
analysis has been carried out for the series and the estimation procedure is presented
along with discussion on associated measurability issues. The procedures are

demonstrated through case studies.

Experimental investigations have been carried out on a laboratory test rig of rotor-bearing
system. Nonlinear bearing stiffness has been estimated by processing the vibration
signals picked up from the bearing caps. Results are validated against those obtained
from earlier investigations and theoretical approximations. Experiments were restricted to
an available set-up, where the rotor was supported in ball bearings. Experimental work
can be carried out in future on rotors supported in fluid-film bearings, in order to further

investigate the utility of the procedures developed during the course of this study.

A limitation of the proposed methods is that they are applicable to polynomial forms of
nonlinearity only. However, most non-polynomial forms can be suitably approximated by
a polynomial form, within a specific range of response, and the procedures developed

during the present study can be applied to them.

Estimation algorithms have been developed for nonlinear stiffness forces only. They can

be readily extended and developed for the systems with nonlinear damping.

The theoretical platform provided by Volterra Series needs to be explored further for

kernel characterization of systems with non-polynomial form of nonlinearities. Time

domain input-output mapping may be more suitable for such investigations. This is an

extensive area and is largely unexplored at present.
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